
Multiresolution et méthodes adaptatives pour les problèmes
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Adaptive numerical methods for PDEs
! The solution u is discretized on a non-uniform mesh T in

which the resolution is locally adapted to its singularities
(shocks, boundary layers, sharp gradients... ).

! Goal: better trade-off between accuracy and CPU/memory
requirements .

! The adaptive mesh is updated based on the a-posteriori
information gained through the computation

(u0,T0) → (u1,T1) → · · · → (un,Tn)
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Two typical setups for adaptive methods
Steady state problems

F (u) = 0

the mesh Tn is refined according to local error indicators (for
example based on residual F (un) ) and un → u as n → +∞.
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Two typical setups for adaptive methods
Evolution problems

∂tu = ε(u)

the numerical solution un approximates u(.,n∆t) and the mesh
Tn is dynamically updated from time step n to n + 1.
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Multiresolution method

Context: systems of hyperbolic PDEs

∂t u + DivxF (u) = 0

Difficulties:
! singularities
! theory : entropy weak solutions
! numerical analysis : costly schemes and limited order of

convergence



Multiscale analysis

! Answer: adaptive mesh refinement
! Difficulties:

! implementation : displacement of the singularities → mesh
! convergence analysis

! Existing approaches:
! AMR (Adaptative Mesh Refinement) (Berger, Oliger, ...)
! Adaptive multiresolution flux evaluation (Harten, Abgrall,

Chiavassa-Donat, ...)
! Galerkin methods in wavelet spaces

(Bacri-Mallat-Papanicolaou, Dahmen-Cohen-Masson,
Maday-Perrier, Bertoluzza, ...)

! Fully adaptive multiresolution scheme
! Harten’s discrete multiresolution framework and link with

wavelet theory
! Finite volume scheme on a time adaptive grid



Discrete multiresolution framework
In 1D Discretization of a function u(x) by its
! point values uj ,k = u(k2−j)

! mean values uj ,k = 2j
∫ (k+1)2−j

k2−j
u(x)dx

x=0 x=LΔ

Δ

x

x/2

Dyadic hierarchy of grids
Sj , j = 0, . . . , J

In 2D



Encoding / Decoding (mean value discretization)
Projection operator Pjj−1 of Sj on Sj−1: Uj−1 = Pjj−1Uj .

j

j−1k

2k 2k+1

uj−1,k = 1
2(uj ,2k + uj ,2k+1)

Prediction operator Pj−1
j from Sj−1 to Sj : Ûj = Pj−1

j Uj−1

j−1 j

kk−1 k+1 2k 2k+1

is an approximation of Uj
! local
! consistent
Pjj−1P

j−1
j = I

! exact for polynomials
of degree r = 2n

ûj ,2k = uj−1,k +
n∑

l=1
γl

(
uj−1,k+l − uj−1,k−l

)



Multiscale decomposition

Prediction error:
uj ,2k − ûj ,2k

(consistence⇒ )
= ûj ,2k+1 − uj ,2k+1

Details :
dj ,k = uj ,2k − ûj ,2k

errors on all but one
subdivisions

Details Dj
+

Mean values Uj−1
%

Mean values Uj

UJ ⇔ (UJ−1,DJ)
⇔ (UJ−2,DJ−1,DJ)

...
⇔ (U0,D1, . . . ,DJ)

= MUJ = (dλ)λ∈∇J

UJ MUJ

Encoding

Decoding

complexity
in O(Card(SJ))



Biorthogonal wavelet framework

u =
∑

λ dλΨλ,

dλ =< u, Ψ̃λ >,
Ψ̃λ = 2j/2Ψ̃(2j . − k),
λ = (j , k).

Ψ
∼

U2

U1

U0

D2

D1

∣∣dj ,k
∣∣ ≤ C2−js

Measure of the local smoothness if u ∈ Cs(Supp Ψ̃j ,k ),
Polynomial exactness of degree r with s ≤ r .

Thresholding u → TΛu :=
∑

λ∈Λ dλΨλ

Set of significant details Λ = Λε := {λ, |dλ| ≥ ε}.
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! Thresholding

Γε = {λ ∈ ∇J , |dλ| ≥ ε|λ|}, εj = 2d(j−J)ε.

Tε(dλ) =

{
dλ if λ ∈ Γε

0 otherwise

AεUJ = M−1TεMUJ .

! Adaptive grid Sε = S(Γε)

(dλ)λ∈Γε
←→ (Uλ)λ∈Sε

.

Tree structure for the adaptive tree Γε ⇒ Complexity of the
coding / decoding algorithm in O(Card(Γε)).



Control of error

||AεUJ − UJ ||L1 ≤ Cε
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Adaptive scheme for hyperbolic PDEs

∂t u + DivxF (u) = 0.

Reference scheme on finest grid SJ :

Un+1
J = EJUn

J

Un+1
λ = Un

λ + B(Un
ν ; ν ∈ Vλ ⊂ SJ), λ ∈ SJ

Harten’s algorithm still on finest grid SJ

Un+1
ε,λ = Un

ε,λ + Bε(Un
ε,ν ; ν ∈ Vλ ⊂ SJ), λ ∈ SJ

Fully adaptive algorithm on S(Γnε)

Un+1
ε = EεUn

ε .



Evolution of (Un
ε , Γnε) into (Un+1

ε , Γn+1
ε )

! Encoding of the
solution at time tn

! Thresholding to obtain
the tree Γnε
! Prediction

! Decoding
! Evolution

Solution at time tn
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Evolution of (Un
ε , Γnε) into (Un+1

ε , Γn+1
ε )

! Encoding

! Thresholding to obtain
the tree Γnε
! Prediction of the tree
Γ̃n+1

ε and grid S(Γ̃n+1
ε )

(Harten heuristics or
more refined strategy)

! Decoding
! Evolution

Details at time tn
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Evolution of (Un
ε , Γnε) into (Un+1

ε , Γn+1
ε )

! Encoding

! Thresholding
! Prediction

! Decoding on the grid
S(Γ̃n+1

ε )
! Evolution with fluxes
computed using
reconstructed solution

Tree Γ̃n+1
ε and grid S(Γ̃n+1

ε )S
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Error analysis

Theorem
Cohen, Kaber, Müller, P., Math. Comp., 2003

||Un
J − Un

ε ||L1 ≤ Cnε

Hypotheses
! More demanding rules for the refinement of the tree
! Smoothness of the underlying wavelet
! Scalar equation, on 1D or cartesian multi-D grid
! Local reconstruction at the finest level

Recent relaxation of the last hypothesis by Hovhannisyan &
Müller
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Recent developements and trends

Workshop on Multiresolution and Adaptive Methods for
Convection-Dominated Problems
January 2223, 2009
Paris, France
Promotion of multiresolution and other adaptive techniques for
complex applications where convection is the prevailing
phenomenon.

! Robustness of the multiresolution method : wide variety of
extensions

! Importance of data structures / parallelisation
! Problem dependent performances / comparison between

Multiresolution and AMR
! Local Time Stepping strategies

http://www.ann.jussieu.fr/mamcdp09



New applications

! Incompressible Navier-Stokes equations. Two-dimensional steady
incompressible flow. Müller-Stiriba, Bramkamp-Lamby-Müller

! Compressible Navier-Stokes equations. Schneider-Farge-Nguyen,
Chiavassa-Donat-Boiron

! Compressible Euler equations. Schneider-Roussel, Müller-Stiriba

! Diphasic compressible flows.
Slugging in pipelines. Coquel-Tran-MP-Nguyen-Andrianov
Laser-Induced Cavitation. Bubbles Müller-Bachmann-Kröninger-Kurz-Helluy

! Reaction-diffusion equations. 2D thermo-diffusive flames, 3D flame balls.
Schneider-Roussel-Gomes-Domingues

! Plasma simulation - Vlasov equation. Sonnendrücker, Campos-Pinto,
Mehrenberger

! Shallow water flows Lamby-Müller-Stiriba, Chiavassa-Donat-Gavara



New tools

! Turbulent weakly compressible 3d mixing layer, Coherent
Vortex Simulation. Schneider & Farge
Penalisation method around obstacle Chiavassa et al

! Anisotropic mesh refinement
Cohen-Dyn-Hecht-Mirebeau

! Treatment of source terms with well balanced schemes
Chiavassa-Donat-Gavara

! Data structures / Parallelisation
Müller et al, Sonnendrücker et al

! Local Time stepping
Müller et al, Schneider et al , Coquel et al, Faille-Nataf



Data structure

In the fully adaptive scheme, one cell is viewed with respect to
! its neighbours in the adaptive grid when updating the

solution with the numerical scheme
! its parents and children when updating the adaptive grid at

each time step
Data structures become crucial with 3D applications and / or
when going parallel



Data structure
! Tree structure (Schneider - Roussel) : Full priority to the

multiresolution
! Hash tables (Müller - Voss) : compromise between

multiresolution efficiency and implementation of the
scheme on the adaptive grid

! Sparse data structure (Sonnendrücker - Latu)



Data structure
! Tree structure (Schneider - Roussel) : Full priority to the

multiresolution
! Hash tables (Müller - Voss) : compromise between

multiresolution efficiency and implementation of the
scheme on the adaptive grid

! Sparse data structure (Sonnendrücker - Latu)

FIG.: Courtesy ¨Mueller et al



Parallelisation of adaptive methods

Multiple criteria
! Load balancing partitionning of the adaptive mesh
! Minimization of the sub domains interfaces
! Efficiency of the partitionning to be used in a time adaptive

algorithm

Space Filling Curves
(Peano-Hilbert)

YODA (Metzmeyer, Hoenen)
RAMSES (CEA)

QUADFLOW (Mogosan, Müller)

Graph partitionning
(Karypis, Kumar)

GGP, GGGP, BKL, etc.
METIS, PETSc

Code Aster (CEA-EDF-Inria)
Scotch (Pellegrini)



Multilevel cost effective techniques

Cost-reduction implementation : NO memory gain! but NO
data-structures needed

! Bihari-Harten JCP (1996)SISC (1997)
(1D-2D/tensor-product CA-MR) Bihari AIAA (2003)
(CA-MR unstructured) FV

! Abgrall-Harten SINUM (1996) (CA-MR unstructured) FV
! Dahmen, Gottschlich-Müller,Müller Num. Math (2000)

(curvilinear meshes, Cell-Average Framework) FV
! Cohen, Dyn, Kaber, MP JCP (2000) (2D-unstructured) FV
! Chiavassa-Donat SISC-(2001) (2D/tensor-product PV-MR)

FD



Recent Applications

FD schemes
! Well-Balanced (TVDB) schemes for Shallow water flows

(Donat-Gavarra). 2D: CPU Gain from 5.5 to 7 (for grids
from 1282 to 5122

! Penalization method for compressible Navier Stokes flows
around obstacle (hig Mach number interactions)
[Chiavassa,Donat,Boiron], 2D: CPU Gain from 3 to 5.5 (for
grids from 5122 to 15362)

! Propagation of waves in porous medium [Chiavassa,
Lombart, Piraux]
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From multiresolution to locally adaptive time stepping
Standard MR scheme

! At a given time, same time step used for all cells

! Time step ruled by CFL condition ∆tn < min
j

∆xj
µ(Un

j )
.

Principle of the LTS strategy: use a time-step adapted to the
local size of the cell constant λ = ∆t/∆x
(Berger, Colella ’89, Mueller, Stiriba ’06)

Δ2Δ

2Δ

Δt
t

x x

Goal : further reduction of # calls to flux functions and
expensive state laws ⇒ CPU ↓



Evolution of the solution at intermediate time

Un
i

U
n+1
i

U
n+2
i

∆tn+1

∆tn

∆tn+1,1

∆tn,4

∆tn,3

∆tn,3

∆tn,1



Synchronization at intermediate times
Osher-Sanders strategy

x

t

Un
k ,j−2 Un

k ,j−1

U
n+1
k ,j−1 U

n+1
k+1,2j

U
n+1
k+1,2j+1

Un
k+1,2j Un

k+1,2j+1

U
n+1/2
k+1,2j+1

U
n+1/2
k+1,2j



Synchronization at intermediate times
Schneider-Roussel-Gomes-Domingues strategy

x

t

Un
k ,j−2 Un

k ,j−1

U
n+1
k ,j−1U

n+1
k+1,2j

Un
k+1,2j

Un
k+1,2j+1 U

n+1/2
k+1,2j+1

U
n+1/2
k+1,2j



Synchronization at intermediate times
Müller & Stiriba strategy

x

t

Un
k ,j−2

U
n+1
k ,j−2

Un
k ,j−1 Un

k+1,2j

U
n+1/2
k ,j−1 U

n+1/2
k+1,2j

U
n+1
k+1,2jU

n+1
k ,j−1



Local Time Stepping (LTS)
Computation of the time-step

Definitions
Macro time step ∆tn ↔ largest cells
Micro time step ∆tn,iK ↔ smallest cells ∆tn =

2K∑

i=1
∆tn,iK

Un
j

U
n+1
j

U
n+2
j

∆tn+1

∆tn

∆tn+1,1
K

∆tn,4K

∆tn,3K

∆tn,2K

∆tn,1K



Local Time Stepping (LTS)
Computation of the time-step

! The micro time-steps decrease during each macro
time-step

! They are updated along with the solution while ensuring
the stability condition

Un
j

U
n+1
j

U
n+2
j

∆tn+1

∆tn

∆tn+1,1
K

∆tn,4K

∆tn,3K

∆tn,2K

∆tn,1K



Local Time Stepping (LTS)
Computation of the time-step

! The micro time-steps decrease during each macro
time-step

! They are updated along with the solution while ensuring
the stability condition

! The first micro time-step ∆tn,1 < min
j

∆xj
µ(Un

j )
.

! The others

∆tn,p < min
(

∆tn,p−1
K , min

j

∆xj
µ(Un,p−1

j )

)

where U
n,p−1
j is the updated solution at time tn +

∑p−1
i=1 ∆tn,iK

! The macro time-step ∆tn =
2K∑

i=1
∆tn,i



Test case with smoothly varying initial condition
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Error versus computing time gain - simplistic state law



Error versus number of calls to state laws gain
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Conclusions and perspectives

! Very active and uprising field
! Need for strong collaboration between computer scientists

and mathematicians
! Comparison between AMR and MR
! Visit the website

http://www.ann.jussieu.fr/mamcdp09
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