M. Hoffmann (joint with M. Doumic, N. Krell, L. Robert)

Université Paris-Dauphine

30 mai 2013

Statistical inference in transportfragmentation equations

Context

- We consider (simple) particle systems \approx toy models for the evolution of cells or bacteria.
 - Each particle grows by ingesting a common nutrient.
 - After some time, each particle gives rise to two offsprings by cell division.
- We structure the model by state variables like size, growth rate and so on.
 - Deterministically, the density of structured state variables evolves according to a fragmentation-transport PDE.
 - Stochastically, the particles evolve according to a PDMP that evolves along a branching tree.

Statistical inference in transportfragmentation equations

Toy model: size-structured populations

- n(t, x) : density of cells of size x.
- Parameter of interest : Division rate B(x).
- 1 cell of size x gives birth to 2 cells of size x/2.
- The growth of the cell size by nutrient uptake is given by a growth rate $g(x) = \tau x$ (for simplicity).

Statistical inference in transportfragmentation equations

■ Transport-fragmentation equation

$$\partial_t n(t,x) + \partial_x (\tau x n(t,x)) + B(x) n(t,x) = 4B(2x) n(t,2x)$$

with
$$n(t, x = 0) = 0$$
, $t > 0$ and $n(0, x) = n^{(0)}(x)$, $x \ge 0$.

- obtained by mass conservation law :
 - LHS: density evolution + growth by nutrient + division of cells of size x.
 - RHS : division of cells of size 2x.
- Several extensions...

Objectives

- Main goal : estimate non-parametrically B from genealogical data of a cell population of size N living on a binary tree.
- Avoid an inverse problem (cp. Doumic, Perthame, Zubelli, 2009 & Doumic, H., Reynaud, Rivoirard, 2012) thanks to richer data set.
- Reconcile the deterministic approach with a rigorous statistical analysis (relaxing the steady-state approximation).

Statistical inference in transportfragmentation equations

FIGURE: Evolution of a E. Coli population.

FIGURE: Evolution of a E. Coli population.

FIGURE: Evolution of a E. Coli population.

Strategy

- Construct a stochastic model accounting for the stochastic dependence structure on a tree for which the empirical measure of *N* particles solves the fragmentation-transport equation (in a weak sense).
- Develop appropriate statistical tools to estimate *B*.
- Additional difficulty & goal : incorporate growth variability (each cell has a stochastic growth rate inherited from its parent).

Statistical inference in transportfragmentation equations

$$(X_t, V_t) \in \big(\bigcup_{k>0} [0, \infty)^k\big)^2,$$

where X_t =size and V_t =growth rate of living cells at time t (inherited from their parent according to a kernel ρ).

■ $n(t, \cdot) := \mathbb{E}\left[\sum_{i=1}^{\infty} \delta_{X_i(t), V_i(t)}\right]$ is a (weak)-solution of an extension of the transport-fragmentation equation :

$$\partial_t n(t, x, \mathbf{v}) + \mathbf{v} \, \partial_x (x \, n(t, x, \mathbf{v})) + B(x) n(t, x, \mathbf{v})$$

$$= 4 \int \rho(\mathbf{v}', \mathbf{d}\mathbf{v}) n(t, 2x, d\mathbf{v}').$$

■ The initial framework $g(x) = \tau x$ is retrieved as soon as $\rho(dv) = \delta_{\tau}(dv)$

Statistical inference in transportfragmentation equations

Result 2

- Genealogical data: we observe size+variability $(\xi_u, \tau_u)_{u \in \mathcal{U}_N}$, where \mathcal{U}_N is a (connected) subset of size N of the binary tree $\mathcal{U} = \bigcup_{k \geq 0} \{0, 1\}^k$.
- Main result: We can construct an estimator $(\widehat{B}_N(x), x > 0)$ of the s-regular division rate B(x) s.t.

$$\mathbb{E}\left[\|\widehat{B}_{N}-B\|_{L^{2}_{loc}}^{2}\right]^{1/2}\lesssim (\log N)N^{-s/(2s+1)}$$

Statistical inference in transportfragmentation equations

Numerical implementation and effect of variability

Statistical inference in transportfragmentation equations

Comparison with the inverse problem approach

FIGURE : Exploration on simulated data via the global approach (inverse problem), $N \approx 3000$.

Statistical inference in transportfragmentation equations

Numerical implementation

equations

Statistical inference in transportfragmentation

FIGURE : Exploration on real-data. Sparse tree, $N \approx 3000$.

■ Given a pair ξ_{u^-}, ζ_{u^-} and ξ_u , we can identify τ_{u^-} through

$$2\xi_u = \xi_{u^-} e^{\tau_{u^-} \zeta_{u^-}}.$$

We have

$$\mathbb{P}(\zeta_u \in [t, t + dt] | \zeta_u \ge t, \xi_u = x) = B(xe^{\tau t})dt$$

from which we obtain the density of the lifetime ζ_{u^-} (lifetime of the parent u^-) conditional on $\xi_{u^-}=x$ and $\tau_{u^-}=v$:

$$t \rightsquigarrow B(xe^{vt}) \exp \left(-\int_0^t B(xe^{vs})ds\right).$$

Statistical inference in transportfragmentation equations

• Using $2\xi_u = \xi_{u^-} \exp(\tau_{u^-}\zeta_{u^-})$, we further infer

$$\begin{split} & \mathbb{P}\left(\xi_{u} \in dx' \middle| \xi_{u^{-}} = x, \tau_{u^{-}} = v\right) \\ = & \frac{B(2x')}{vx'} \mathbf{1}_{\{x' \geq x/2\}} \exp\left(-\int_{x/2}^{x'} \frac{B(2s)}{vs} ds\right) dx'. \end{split}$$

• We obtain a simple an explicit representation for the transition kernel on $\mathcal{S} = [0, \infty) \times \mathcal{E}$,

$$\mathcal{P}_B(\mathbf{x}, d\mathbf{x'}) = \mathcal{P}_B((x, v), x', dv')dx'$$

$$\mathcal{P}_{B}((x,v),x',dv')dx'$$

$$=\frac{B(2x')}{vx'}\mathbf{1}_{\{x'\geq x/2\}}\exp\big(-\int_{x/2}^{x'}\frac{B(2s)}{vs}ds\big)\rho(v,dv').$$

- ho(a, da') : appropriate Markov kernel on \mathcal{E} .
- Under appropriate conditions on \mathcal{B} , the Markov chain on $\mathcal{S} = [0, \infty) \times \mathcal{E}$ is geometrically ergodic. (It is however not reversible.)

 \blacksquare Under appropriate assumptions, we have existence (and uniqueness) of an invariant measure on ${\cal S}$

$$\nu_B(d\mathbf{x}) = \nu_B(x, dv)dx$$

i.e. such that $\nu_B \mathcal{P}_B = \nu_B$.

More precisely, we have a contraction property

$$\sup_{|\mathbf{g}| \leq V} \left| \mathcal{P}_B^k \mathbf{g}(\mathbf{x}) - \int_{\mathcal{S}} \mathbf{g}(\mathbf{z}) \nu_B(d\mathbf{z}) \right| \leq RV(\mathbf{x}) \gamma^k$$

for some $\gamma < 1$ locally uniformly in B for an appropriate Lyapunov function V.

Statistical inference in transportfragmentation equations

Identifying B through the invariant measure

$$\begin{split} &\nu_B(y,dv')\\ &= \int_{\mathcal{S}} \nu_B(x,dv) dx \, \mathcal{P}_B\big((x,v),y,dv'\big)\\ &= \frac{B(2y)}{y} \int_{\mathcal{E}} \int_0^{2y} \nu_B(x,dv) dx \exp\big(-\int_{x/2}^y \frac{B(2s)}{vs} ds\big) \frac{\rho(v,dv')}{v}. \end{split}$$

"Survival analysis trick"

$$\exp\big(-\int_{x/2}^{y} \frac{B(2s)}{vs} ds\big) = \int_{y}^{\infty} \frac{B(2s)}{vs} \exp\big(-\int_{x/2}^{v} \frac{B(2s')}{vs'} ds'\big) ds$$

and \mathcal{P}_{B} is involved in the RHS again...

Statistical inference in transportfragmentation equations

Identifying B through the invariant measure

We obtain

$$\nu_{B}(y, dv') = \frac{B(2y)}{y} \int_{\mathcal{E}} \int_{0}^{2y} \nu_{B}(x, dv) dx$$

$$\int_{y}^{\infty} \frac{B(2s)}{vs} \exp\left(-\int_{x/2}^{s} \frac{B(2s')}{vs'} ds'\right) ds \frac{\rho(v, dv')}{v}$$

$$= \frac{B(2y)}{y} \int_{\mathcal{E}} \int_{[0,\infty)} \mathbf{1}_{\{x \le 2y, s \ge y\}} v^{-1}$$

$$\nu_{B}(x, dv) dx \mathcal{P}_{B}((x, v), s, dv') ds.$$

and integrate in dv'.

Statistical inference in transportfragmentation equations

$$u_B(y) = \frac{B(2y)}{y} \mathbb{E}_{\nu_B} \left[\frac{1}{\tau_{u^-}} \mathbf{1}_{\{\xi_u^- \le 2y, \ \xi_u \ge y\}} \right].$$

We conclude

$$B(y) = \frac{y}{2} \frac{\nu_B(y/2)}{\mathbb{E}_{\nu_B} \left[\frac{1}{\tau_{u^-}} \mathbf{1}_{\{\xi_u^- \leq y, \ \xi_u \geq y/2\}} \right]}.$$

Statistical inference in transportfragmentation equations

- Introduce a kernel function $K: [0,\infty) \to \mathbb{R}, \ \int_{[0,\infty)} K(y) dy = 1$ and set $K_h(y) = h^{-1}K(h^{-1}y)$ for $y \in [0,\infty)$ and h > 0.
- Final estimator

$$\widehat{B}_n(y) = \frac{y}{2} \frac{n^{-1} \sum_{u \in \mathcal{U}_n} K_h(\xi_u - y/2)}{n^{-1} \sum_{u \in \mathcal{U}_n} \frac{1}{\tau_{u^-}} \mathbf{1}_{\{\xi_{u^-} \le y, \xi_u \ge y/2\}} \bigvee \varpi}$$

■ The estimator $\widehat{B}_n(y)$ is specified by K, the bandwidth h and the threshold ϖ .

Some references

- Doumic, M., H. M., Reynaud-Bouret, P. and Rivoirard, V. (2012) Nonparametric estimation of the division rate of a size-structured population. SIAM Journal on Numerical Analysis. 50, 925-950
- Doumic, M., H.,M., Krell, N. and Robert, L. (2012) Statistical estimation of a growth-fragmentation model observed on a genealogical tree. arXiv :1210.3240
- Doumic, M., Perthame, B. and Zubelli, J. (2009)
 Numerical Solution of an Inverse Problem in
 Size-Structured Population Dynamics. Inverse Problems,
 25, 25pp.

Statistical inference in transport-fragmentation equations