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Motivations

Motivations

Low-grade gliomas

@ Progressive brain tumors characterized radiologically by slow and
continuous growth preceding anaplastic transformation

@ Their treatment includes surgery, radiotherapy and chemotherapy but
remains controversial
@ Develop model and simulation tool to conceive potentially more effective

treatment schedules and to predict treatment efficacy in LGG patients
on the basis of pre-treatment time-course tumor size observations.

PCV onset

MTD (mm)




Motivations

Issues

ODE Model

@ Development in Numed Team of a tumor growth inhibition model
for LGG based on ODEs

@ Interesting results : correct description of tumor growth and
response to treatments




Motivations

Issues

EDP Model

@ Significant contributions from the group of Kristin Swanson
(University of Washington) toward modeling the time and space
evolution of gliomas.

@ Models based on partial differential equations, describe the
spatiotemporal evolution patterns of tumor cells in the brain as
"traveling waves" (based on KPP equations) driven by 2
processes : uncontrolled proliferation and tissue invasion

oc
¢ = tumor cells concentration

Tumor’s volume (which is the observed clinical data) :

vmzlf@mm



Motivations

Model Parameters Estimation

@ a PDE model
@ some clinical datas for a few individuals

and we want to adjust the model taking into account the individual
variability

Some existing works :
@ Inverse problem approaches : huge literature.
o essentially done indiv. by indiv.
@ Another viewpoint : use knowledge from all the population

e and adopt a statistical approach.
o Again : huge literature
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Mixed effects model

Focusing on : (nonlinear) mixed effects model

Population of 12 individuals :

GONGENTRATION

TIME

@ each curve described by the same parametric model
@ with its own individual parameters (inter-subject variability)



Mixed effects model

Focusing on : (nonlinear) mixed effects model

Vi =X, ) +ej, 1< i< N, 1< j<n (1)
@ yj; € R : j observation of individual i
@ N : number of individuals
@ n; : number of observations of individual i
@ x; € R™ : known design variables (usually observation times)
@ ¢ : vector of the n, unknown individual parameters

@ ¢; : residual errors (including measurement errors for example)



Mixed effects model

Focusing on : (nonlinear) mixed effects model

Vi = f(X,]',Q/J,‘)+€,‘j,1 <i< N,1 S]S nj
LZJI' = h(Cf7 Hy 7]/') (2)
@ ¢ : known vector of M covariates

@ 1 : unknown vector of fixed effects (size p)

@ n; ~jiq. N(0,Q) : unkn. vect. of random effects (size q)

Q is the g x g var.— covariance matrix of the rand. eff.

@ cj ~iid N(0,0?) : residual errors

Parameters of the model to be determined : 0 = (1, Q, 0?)
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The Expectation-Maximization algorithm

(Dempster, Laird & Rubin, 1977)
Goal : Maximum Likelihood Estimation

Since ¢ is not observed, log p(y, 1; 8) can not be directly used to
estimate 6. An option :

Iterative algorithm : at step k
@ E step : evaluate
Q«(0) = Eflog p(y, ¢; 0)|y: Ox—1]
@ M step : update the estimation of 6
Ok = Argmax Q(0)

Some practical drawbacks :
@ CV depends on the initial guess
@ Slow CV of EM
@ Evaluation of Qx(0)



The SAEM algorithm (Stocha. Approx. of EM)

(Delyon, Lavielle & Moulines, 1999)
Improvement of the EM algorithm implemented in the Monolix
software

To our knowledge, the following is working with MONOLIX :
@ ODE’s
@ Systems of ODE’s and Chains of ODE’s
@ Stochastic DE’s
@ Numerous validation on real applications :
@ PK/PD (1 or more compart.), viral dynamics models ...

but the integration of PDE’s remains an open problem.
Some attempts here and there but essentially done by transforming
the PDE into a set of ODE’s.

Due to the computational cost
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Extension to PDE

The primitive idea ...

Assume you don’t want to simplify the model

and want to keep the PDE to have the solution
@ decouple PDE resolution and SAEM evaluation :
@ precompute solutions (as functions of parameters)
@ store them and call them when SAEM need them
This is the classical Offline/Online concept

@ Offline step : very long computational time (who cares ?)
@ Online step : “instantaneous” = SAEM doable

Rk : there is still the problem of storage ... (balance v.s. cpu)



Extension to PDE

Precomputation

To evaluate quickly a function f, ...
... interpolate from precomputed values on a grid
Start with an hyper-rectangle (let’s say a “cube”) :
Cinit = M Xamini> Ximax. ]

@ Divide the “cube” and compute weigths of children
@ Choose a child (e.g. highest weight) and divide it
@ lterate as needed




Extension to PDE

Examples of weights

Let {fx}x—1 ov : values of f at the summits of C;.

@ Simplest : volume of cube C; — regular mesh
@ L' weight :

2N
1 1
fn = ?Nka and ! = 2T,ka— fnl.
k=1

@ [ weight :
wi® = sup |fx — fml.
1<k<2aN
@ BV weight : avoid excessive ref near discontinuities

wBY = vol(C}) sup |fx — fu
1<k<2N



Extension to PDE

Remarks

Errors :
@ With this approach the global error =

@ decomposes as : humerical error "' (PDE)
@ and an interpolation error °? (Database,DB)

@ Given a level of admissible ¢, one can derive the optimal choice
of the computational cost needed to solve the PDE.

Feasibility : for a C' function, building database is doable if there are
no more than

@ 5-6 parameters for a 4 levels DB
@ 4-5 parameters for a 5 levels DB

— for more parameters, additional ideas are needed
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Application : KPP

Description of the KPP model

We consider the classical reaction-diffusion PDE named after
Kolmogoroff, Petrovsky and Piscounoff (1937) :
owu—V.(DVuU) = Ru(1 — u),vt > 0,Vx € A (3)
u(To, x) = al|x_x <, and Neumann B.C. on A (4)
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Application : KPP

Properties of the KPP model

@ Maximum principle : vVt >0, 0<u(t,.) <1
@ Good model for front propagation

o Speed = 2V/AD, Front width o /3
@ Define the “volume” of the invaded zone :

V(t):/Au(t,x)dx (5)

@ Parameters :
@ R (reaction coefficient),
e D (diffusion coefficient),
@ xo (localisation of the initial “invaded zone”).
@ Can be applied to numerous fields with propagation phenomena
(flame propagation, tumour growth [Swanson], etc) : existence of
particular solutions called "travelling waves".



Application : KPP
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Application : KPP

Technical details - Populations

100 to 1000 individuals in each population. Noise : 0%, 5%, 10%
Lognormal distribution of parameters.
101 points in time.



Application : KPP

Results : individual and population errors

Goal : estimation of the population and individual parameters (R, D
and xp) with Monolix using the virtual population as observed data

Population errors for 150 populations with 100 individuals

noise 0% | noise 5% | noise 10%
Xo 2.8 32 4.0
R 2.26 9.9 15.9
D 9.0 15.6 20.9

Individual errors for 150 populations with 100 individuals

noise 0% | noise 5% | noise 10%
Xo 20.9 19.2 17.0
R 58.6 46.1 47.5
D 26.5 225 23.5




Application : KPP

Results : pred vs obs indiv params (100 ind)

Popylation 33 Parametre x0 pour bruit 0% Popyation 33 Parametre x0, pour bruit 5%Popujation 33 Parametre x0 pour bruit 10%
08 08 03
08 06 05
04 04 04
02 02 02
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Application : KPP

Results : same quality with a lower cost

“Exact” case

Interpolation with
homogeneous mesh

Interpolation with
heterogeneous mesh

Offline

Unit average CPU
Offline total CPU

No offline computation

Mesh with n segmenta-
tions, (2" + 1)? points.
For 5 segmentations,

Mesh with n points.
Example with 500
points

1089 points
- 2.12s 2.12s
- 38mn28s 17mn40s

Online SAEM, 10° KPP eva- | SAEM, 10° interpola- | SAEM, 10° interpola-
luations tions tions

Unit average CPU 2s 45x%x 107%s 51 x 107%s

Online total Cost ~ 23 days3 h 7mn30s 8mn30s

Total cost ~ 23 days3 h 45mn58s 26mn10s

The number of calls of the solver in SAEM is about 10° for this case.
Note that this is sequential CPU time. The mesh generation can be
easily parallelize on many cores with an excellent scalability.
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Conclusions

Conclusions

@ Coupling of SAEM and PDE’s

@ Doable but limited to 5-6 parameters (in basic mode)
@ Reasonable quality of param. estimation

@ Need a case by case study for each PDE

Perspectives

@ Explore various way to reach higher # of params
@ optimized sparsity of the DB—mesh
e “dynamic” adaptivity
e Kriging, experimental design

@ Application to other models (some done, other in progress)
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