De calculer juste
a calculer au plus juste

Introduction a I'école PRCN

Florent de Dinechin
AriC project

e =\
— — a— Informatiques, .7 mathématiques \!
)Lyon 1
—: :— % ﬂ,&‘ . y

ENS DE LYON

The AriC project @ Ecole Normale Supérieure de Lyon:
Arithmetic and Computing at large

@ Hardware and software

@ From addition to linear algebra

HANDBOOK or

o Fixed point, floating-point, multiple-precision, L CaC

ARITHMETIC

finite fields,

@ Pervasive concern of performance, numerical
quality and validation

@ Interactions with computing at large

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Floating-point in your machine
Accuracy versus reproductibility
Performance versus accuracy
Conclusion: It's the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Floating-point in your machine

Floating-point in your machine

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

It is called IEEE-754, and you will hear a lot about it.
For instance,
Correct rounding to the nearest

The basic operations (noted @©, ©, ®, @), and the square root should
return the FP number closest to the mathematical result.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

It is called IEEE-754, and you will hear a lot about it.
For instance,
Correct rounding to the nearest

The basic operations (noted @©, ©, ®, @), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
= no bias.)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

It is called IEEE-754, and you will hear a lot about it.
For instance,
Correct rounding to the nearest

The basic operations (noted ®, ©, ®, @), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
= no bias.)

No compromise: this is the best that the format allows

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

It is called IEEE-754, and you will hear a lot about it.
For instance,
Correct rounding to the nearest

The basic operations (noted ®, ©, ®, @), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
= no bias.)

No compromise: this is the best that the format allows

Nice properties :
o If a+ bis a FP number, then a ® b returns it
@ Rounding is monotonic

@ Rounding does not introduce any statistical bias

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Let us compile the following C program:

1 float ref, index;

2

3 ref = 169.0 / 170.0;

4

5 for (i = 0; i < 250; i++) {

6 index = 1i;

7 if (ref == (index / (index + 1.0))) Dbreak;
8 }

9

10 printf ("i=%d\n",1i);

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Equality test between FP variables is dangerous.
Or,
If you can replace a==b with (a-b)<epsilon in your code, do it!

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Equality test between FP variables is dangerous.
Or,
If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x,y) on a snooker table,
the probability that the ball stops at position (x, y) is always zero.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Equality test between FP variables is dangerous.
Or,
If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x,y) on a snooker table,
the probability that the ball stops at position (x, y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Equality test between FP variables is dangerous.
Or,
If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x,y) on a snooker table,
the probability that the ball stops at position (x, y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

@ The processor

has internal FP registers,

o performs basic FP operations,
o raises exceptions,

o writes results to memory.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

@ The processor
@ The operating system

o handles exceptions
o computes functions/operations not handled directly in hardware

> most elementary functions (sine/cosine, exp, log, ...),
» divisions and square roots on recent processors
> subnormal numbers
o handles floating-point status: precision, rounding mode, ...

> older processors: global status register
> more recent FPUs: rounding mode may be encoded in the

instruction

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

@ The processor
@ The operating system
@ The programming language
o should have a well-defined semantic

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

10

@ The processor
@ The operating system
@ The programming language

o should have a well-defined semantic,
o ... (detailed in some arcane 1000-pages document)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

10

@ The processor
@ The operating system
@ The programming language
@ The compiler
o has hundreds of options

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

11

@ The processor

@ The operating system

@ The programming language
@ The compiler

o has hundreds of options
o some of which to preserve the well-defined semantic of the language
o but probably not by default:

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

11

@ The processor

@ The operating system

@ The programming language
@ The compiler

has hundreds of options

some of which to preserve the well-defined semantic of the language
but probably not by default:

Marketing says: default should be optimize for speed!

©

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

11

The processor
The operating system
The programming language

The compiler

The programmer
o ... is in charge in the end.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

12

The processor
The operating system
The programming language

The compiler

The programmer
o ... is in charge in the end.

Of course, eventually, the programmer will get the blame.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

12

@ Hardware support for

o addition/subtraction and multiplication

in single-precision (binary32) and double-precision (binary64)
SIMD versions: two binary32 operations for one binary64
various conversions and memory accesses

© 6 ©

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

@ Hardware support for

o addition/subtraction and multiplication

in single-precision (binary32) and double-precision (binary64)
SIMD versions: two binary32 operations for one binary64
various conversions and memory accesses

@ Typical performance (for one SIMD way):
o 3-7 cycles for addition and multiplication, pipelined (1 op/cycle)
o 15-50 cycles for division and square root,
hard or soft, not pipelined (1 op / n cycles).
o 50-500 cycles for elementary functions (soft)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 13

@ It is slower than the (more recent) SSE2 FPU

@ It is more accurate (“double-extended” 80 bit format), but at the
cost of entailing horrible bugs in well-written programs

@ the bane of floating-point between 1985 and 2005

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

14

(real story, told by somebody at CERN)
@ Use the (robust and tested) standard sort function of the STL

C++ library
@ to sort objects by their radius: according to x*x+yx*y.

@ Sometimes (rarely) segfault, infinite loop...
@ Why? Because the sort algorithm works under the following naive
assumption: if A £ B, then, later, A> B
o x*x+yxy inlined and compiled differently at two points of the

program,
o computation on 64 or 80 bits, depending on register allocation

o enough to break the assumption (horribly rarely).

We will see there was no programming mistake.
And it is very difficult to fix.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 15

@ Auvailable for all recent x86 processors (AMD and Intel)
@ An additional set of 128-bit registers
@ An additional FP unit able of

o 2 identical binary64 FP operations in parallel, or
o 4 identical binary32 FP operations in parallel.

@ clean and standard implementation

o subnormals trapped to software, or flushed to zero
o depending on a compiler switch (gcc has the safe default)

And soon AVX: multiply all these numbers by 2
(256-bit registers, etc)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

16

Power and PowerPC processors, also in IBM mainframes and
supercomputers

o No floating-point adders or multipliers

@ Instead, one or two FMA: Fused Multiply-and-Add

e Compute o(a x b+ ¢):

o faster: roughly in the time of a FP multiplication
o more accurate: only one rounding instead of two
o enable efficient implementation of division and square root

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

17

Power and PowerPC processors, also in IBM mainframes and
supercomputers

o No floating-point adders or multipliers

@ Instead, one or two FMA: Fused Multiply-and-Add

e Compute o(a x b+ ¢):

o faster: roughly in the time of a FP multiplication
o more accurate: only one rounding instead of two
o enable efficient implementation of division and square root

@ Standardized in IEEE-754-2008

o but not yet in your favorite language

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

e Compute o(a x b+ ¢):
o faster: roughly in the time of a FP multiplication
o more accurate: only one rounding instead of two
o enable efficient implementation of division and square root

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

18

e Compute o(a x b+ ¢):
o faster: roughly in the time of a FP multiplication
o more accurate: only one rounding instead of two
o enable efficient implementation of division and square root

@ All the modern FPUs are built around the FMA:
ARM, Power, 1A64, all GPGPUs, and even latest Intel and AMD
processors.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

18

e Compute o(a x b+ ¢):
o faster: roughly in the time of a FP multiplication
o more accurate: only one rounding instead of two
o enable efficient implementation of division and square root
o All the modern FPUs are built around the FMA:
ARM, Power, 1A64, all GPGPUs, and even latest Intel and AMD
processors.
@ enables classical operations, too...
o Addition: o(a x 1+ ¢)
o Multiplication: o(a x b+ 0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

18

o(ax b+ c)

Using it breaks some expected mathematical propertie

@ Loss of symmetry in v/a% + b2

e Worse: a®> — b?, when a = b :
o(o(axa)—axa)

o Worse: if b? > 4ac then (...) Vb — dac

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 19

o(ax b+ c)

Using it breaks some expected mathematical propertie

@ Loss of symmetry in v/a% + b2

e Worse: a®> — b?, when a = b :
o(o(axa)—axa)

o Worse: if b? > 4ac then (...) Vb — dac

Do you see the sort bug lurking?

By default, gcc disables the use of FMA altogether
(except as + and x)

(compiler switches to turn it on)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

19

When you write
sqrt (bxb-4*axc)

do you know how it is going to be compiled?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

20

Consider the following program, whatever the language

float a,b,c,x; J

x = atb+tctd;

Two questions:
@ In which order will the three addition be executed?

@ What precision will be used for the intermediate results?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

21

Consider the following program, whatever the language

float a,b,c,x;
X = atb+ct+d;

Two questions:
@ In which order will the three addition be executed?

@ What precision will be used for the intermediate results?

Fortran, C and Java have completely different answers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

21

float a,b,c,x;
x = atb+tctd;

@ In which order will the three addition be executed?

o With two FPUs (dual FMA, or SSE2, ...),
(a+ b) + (c + d) faster than ((a+ b) +¢) + d

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

22

float a,b,c,x;
x = atb+tctd;

@ In which order will the three addition be executed?
o With two FPUs (dual FMA, or SSE2, ...),
(a+ b) + (c + d) faster than ((a+ b) +¢) + d
o If a, ¢, d are constants, (a+ ¢+ d) + b faster.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

float a,b,c,x;
x = atb+tctd;

@ In which order will the three addition be executed?
o With two FPUs (dual FMA, or SSE2, ...),
(a+ b) + (c + d) faster than ((a+ b) +¢) + d
If a, ¢, d are constants, (a+ ¢ + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2190 1 — 2100)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

float a,b,c,x;
x = atb+tctd; J

@ In which order will the three addition be executed?
o With two FPUs (dual FMA, or SSE2, ...),
(a+ b) + (c + d) faster than ((a+ b) +¢) + d
If a, ¢, d are constants, (a+ ¢ + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2190 4 1 — 2100)
o Is the order fixed by the language, or is the compiler free to choose?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

float a,b,c,x;
x = atb+tctd; J

@ In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),

(a+ b) + (c + d) faster than ((a+ b) +¢) + d

If a, ¢, d are constants, (a+ ¢ + d) + b faster.

(here we should remind that FP addition is not associative

Consider 2190 4 1 — 2100)

Is the order fixed by the language, or is the compiler free to choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

22

float a,b,c,x;
x = atb+ctd;

@ In which order will the three addition be executed?
@ What precision will be used for the intermediate results?
o Bottom up precision: (here all float)

> elegant (context-independent)

> portable

> sometimes dangerous: compare C=(F-32)*(5/9) and
C=(F-32)%*5/9

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

float a,b,c,x;
x = atb+ctd;

@ In which order will the three addition be executed?

@ What precision will be used for the intermediate results?
o Bottom up precision: (here all float)
> elegant (context-independent)
> portable
> sometimes dangerous: compare C=(F-32)*(5/9) and
C=(F-32)*5/9
o Use the maximum precision available which is no slower
> in C, variable types refer to memory locations
> more accurate result

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

float a,b,c,x;
x = atb+ctd;

@ In which order will the three addition be executed?

@ What precision will be used for the intermediate results?
o Bottom up precision: (here all float)
> elegant (context-independent)
> portable
> sometimes dangerous: compare C=(F-32)*(5/9) and
C=(F-32)*5/9
o Use the maximum precision available which is no slower
> in C, variable types refer to memory locations
> more accurate result
o lIs the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages — Fortran —
Part 1: Base language

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

24

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages — Fortran —
Part 1: Base language

The FORmula TRANSslator translates mathematical formula into
computations.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 24

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages — Fortran —
Part 1: Base language

The FORmula TRANSslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

24

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 25

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 25

X,Y,Z of any numerical type, A,B,C of type real or complex, |, J of integer
type.

Expression | Allowable alternative form

X+Y Y+X
X*Y Y*X
X+Y Y-X

X+Y+Z | X+ (Y +2)
XY4+Z | X-(Y-2)

X*A/Z x *(A/2)
X*Y-X*Z * (Y- 2)
A/B/C A / (B*C)
A/50 |02*A

Consider the last line :
@ A/5.0 is actually more accurate 0.2*A. Why?
@ This line is valid if you replace 5 by 4, but not by 3. Why?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 26

In 1991, a Patriot anti-missile failed to intercept a Scud missile.
28 people were killed.

@ The code worked with time increments of 0.1 s.
@ But 0.1 is not representable in binary.
@ In the 24-bit format used, the number stored was
0.099999904632568359375
@ The error was 0.0000000953.
o After 100 hours = 360,000 seconds, time is wrong by 0.34s.
@ In 0.34s, a Scud moves 500m
Test: which of the following increments should you use?
10 5 3 1 05 025 02 0125 0.1 J

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

27

Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alternative
forms that may be used by the processor in the actual evaluation of the
expression. This is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

28

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Forbidden alternative form
1/2 0.5 *1

X*1/J X*(1/J)

I/J/A I/ (J*A)

X+Y)+Z X+ (Y+2Z)
X*Y)-(X*2Z) | X*(Y-2)

X*(Y-2) X*Y-X*Z

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

You have been warned.

The inclusion of parentheses may change the mathematical value of an
expression. For example, the two expressions A*I/J and A*(I/J) may
have different mathematical values if | and J are of type integer.

Difference between C=(F-32)*(5/9) and C=(F-32)*5/9.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 30

(yes, you should read the manual of your favorite language
and also that of your favorite compiler)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

31

The “C11" standard:
International Standard ISO/IEC ISO/IEC 9899:2011.

@ Contrary to Fortran, the standard imposes an order of evaluation
o Parentheses are always respected,
o Otherwise, left to right order with usual priorities
o If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

@ Consequence: little expressions rewriting

o Only if the compiler is able to prove that the two expressions always
return the same FP number, including in exceptional cases

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

32

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

33

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK

@ x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

33

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK

@ x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.

@ but x/5.0 may not be replaced with 0.2*x
(C won't introduce the Patriot bug)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

33

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK
@ x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.
@ but x/5.0 may not be replaced with 0.2*x
(C won't introduce the Patriot bug)
@ x*1 and x/1 may be replaced with x

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

33

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK

@ x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.

@ but x/5.0 may not be replaced with 0.2*x
(C won't introduce the Patriot bug)
@ x*1 and x/1 may be replaced with x
@ x-x may not be replaced with 0
unless the compiler is able to prove that x will never be oo nor NaN

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 33

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK
@ x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.
@ but x/5.0 may not be replaced with 0.2*x
(C won't introduce the Patriot bug)
@ x*1 and x/1 may be replaced with x
@ x-x may not be replaced with 0
unless the compiler is able to prove that x will never be oo nor NaN
@ Worse: x+0 may not be replaced with x
unless the compiler is able to prove that x will never be —0
because (—0) + (+0) = (40) and not (—0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 33

Morceaux choisis from appendix F.8.2 of the C11 standard:
o Commutativities are OK
@ x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.
@ but x/5.0 may not be replaced with 0.2%*x
(C won't introduce the Patriot bug)
@ x*1 and x/1 may be replaced with x
@ x-x may not be replaced with 0
unless the compiler is able to prove that x will never be oo nor NaN
@ Worse: x+0 may not be replaced with x
unless the compiler is able to prove that x will never be —0
because (—0) + (+0) = (40) and not (—0)
@ On the other hand x-0 may be replaced with x
if the compiler is sure that rounding mode will be to nearest.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 33

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK
x/2 may be replaced with 0.5%*x,
because both operations are always exact in IEEE-754.
but x/5.0 may not be replaced with 0.2*x
(C won't introduce the Patriot bug)

@ x*1 and x/1 may be replaced with x

@ x-x may not be replaced with 0

unless the compiler is able to prove that x will never be oo nor NaN
Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be —0
because (—0) + (+0) = (40) and not (—0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

X == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 33

Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

34

Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...
But there is always an option to enable it.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

34

@ So, perfect determinism wrt order of evaluation

@ Strangely, intermediate precision is not determined by the
standard: it defines a bottom-up minimum precision, but invites
the compiler to take the largest precision which is larger than this
minimum, and no slower

o ldea:

o If you wrote float somewhere, you probably did so because you
thought it would be faster than double.

o If the compiler gives you long double for the same price,
you won't complain.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

35

@ Small drawback
o Before SSE, float was almost always double or double-extended
o With SSE, float should be single precision (2-4x faster)
o Or, on a newer PC, the same computation became much less
accurate!

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

36

@ Small drawback
o Before SSE, float was almost always double or double-extended
o With SSE, float should be single precision (2-4x faster)
o Or, on a newer PC, the same computation became much less
accurate!
@ Big drawbacks

o The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 36

@ Small drawback

o Before SSE, float was almost always double or double-extended

o With SSE, float should be single precision (2-4x faster)

o Or, on a newer PC, the same computation became much less
accurate!

@ Big drawbacks

o The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
o It does so almost randomly (it totally depends on the context)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 36

@ Small drawback

o Before SSE, float was almost always double or double-extended

o With SSE, float should be single precision (2-4x faster)

o Or, on a newer PC, the same computation became much less
accurate!

@ Big drawbacks

o The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)

o It does so almost randomly (it totally depends on the context)

o But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

36

@ Small drawback

o Before SSE, float was almost always double or double-extended

o With SSE, float should be single precision (2-4x faster)

o Or, on a newer PC, the same computation became much less
accurate!

@ Big drawbacks

o The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)

o It does so almost randomly (it totally depends on the context)

o But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.

o Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 36

@ Small drawback
o Before SSE, float was almost always double or double-extended
o With SSE, float should be single precision (2-4x faster)
o Or, on a newer PC, the same computation became much less
accurate!

@ Big drawbacks

o The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)

o It does so almost randomly (it totally depends on the context)

o But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.

o Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision

o And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 36

@ Integrist approach to determinism: compile once, run everywhere

o float and double only.

o Evaluation semantics with fixed order and precision.
@ No sort bug.

© Performance impact, but...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste

37

@ Integrist approach to determinism: compile once, run everywhere
o float and double only.
o Evaluation semantics with fixed order and precision.
@ No sort bug.
© Performance impact, but... only on PCs (Sun also sold SPARCs)
© You've paid for double-extended processor, and you can't use it
(because it doesn't run anywhere)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 37

@ Integrist approach to determinism: compile once, run everywhere
o float and double only.
o Evaluation semantics with fixed order and precision.
@ No sort bug.
© Performance impact, but... only on PCs (Sun also sold SPARCs)
© You've paid for double-extended processor, and you can't use it
(because it doesn't run anywhere)

The great Kahan doesn't like it.
@ Many numerical unstabilities are solved by using a larger precision
o Look up Why Java hurts everybody everywhere on the Internet

| tend to disagree with him here. We can't allow the sort bug.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 37

Floating point numbers

These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or
Java implementation) for the accepted range and handling of overflow.

You have been warned.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste a calculer au plus juste 38

Floating point numbers

These represent machine-level double precision floating point numbers.
You ar