

B.Bzeznik
Journées mesocentres 2016

11/10/2016

NIX sur machines de calcul

Heterogeneous systems

CIMENT computing GRID

CIMENT libraries repository

● Like everybody in the HPC world, we use environment
modules

● Each computing cluster has it's “site” modules that we
compile “by hand”

● For the grid, we created an environment which holds it's
own glibc to have a uniform set of modules on every
clusters

CIMENT libraries repository

● PROBLEMS:

– Hard to maintain

– Not very easy to link against our libraries

– A lot of dependencies, more and more complicated to
build as the operating system becomes old

– Recompilation at system change (or not, but...)

– Jobs are not reproducible in the “sites” environments as
soon as we upgrade the system

– A feeling of doing something that could be more
effective if we share our work

Solutions

● lmod
 https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
Lua replacement for “modules”, with hierarchical support

● Easybuild https://hpcugent.github.io/easybuild
User level automatic building

● Spack https://github.com/LLNL/spack
User level automatic building

● Nix https://nixos.org/nix/
A packaging system that allows user-level installs

● Guix https://www.gnu.org/software/guix
A packaging system that allows user-level installs (the GNU one)

● Container based solutions (Shifter, Singularity,...)
Light virtualization → maintaining system images

https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
https://hpcugent.github.io/easybuild
https://github.com/LLNL/spack
https://nixos.org/nix/
https://www.gnu.org/software/guix
http://www.nersc.gov/research-and-development/user-defined-images/
http://singularity.lbl.gov/

NIX packaging system

● Nix is a free packaging system

● Packages are described with a
functional language (the Nix language)
→ derivations

● Nix packages can be installed at the
user level, into a shared /nix store

● Each package version is stored into a
unique directory of /nix/store, starting
by a hash

● Glibc is embedded, so Nix can run on
top of almost every Linux flavour (that
can make containers pretty useless...)

NIX profiles

● Each user can have many profiles, allowing installation of
different versions of a given package

● Rollback at a given version of a profile is very easy

● Administrator can set up system wide default profiles

● A profile is a set of symbolic links into ~/.nix-profile

● The PATH of the user contains ~/.nix-profile/bin

● switch profile:
$ nix-env –switch-profile $NIX_USER_PROFILE_DIR/my_test_profile

NIX profiles

(abstract from the Nix manual: https://nixos.org/nix/manual/)

https://nixos.org/nix/manual/

NIX packages: nixpkgs

● Nixpkgs is a set of more than 10k packages

● To get all the latest derivations at once:
$ git clone git://github.com/NixOS/nixpkgs.git

● install a package:
$ nix-env -i -A gromacsMPI
It will install the MPI variant of the gromacs package. If
not already in the binary cache, it will be automatically
compiled and be available for the other users directly as
a binary

● remove a package:
$ nix-env -e gromacs

NIX packages: example

{ stdenv, fetchurl, netcdf, netcdfcxx4, gsl, udunits, antlr, which, curl }:

stdenv.mkDerivation rec {
 version = "4.5.5";
 name = "nco";

 buildInputs = [netcdf netcdfcxx4 gsl udunits antlr which curl];

 src = fetchurl {
 url = "https://github.com/nco/nco/archive/${version}.tar.gz";
 sha256 =
"bc6f5b976fdfbdec51f2ebefa158fa54672442c2fd5f042ba884f9f32c2ad666";
 };

 meta = {
 description = "The NCO (netCDF Operator) toolkit manipulates and analyzes
data stored in netCDF-accessible formats, including DAP, HDF4, and HDF5";
 homepage = http://nco.sourceforge.net/;
 license = stdenv.lib.licenses.gpl3;
 maintainers = [stdenv.lib.maintainers.bzizou];
 platforms = stdenv.lib.platforms.linux;
 };
}

development/libraries/nco/default.nix

NIX packages: example

[bzizou@bart:~]$ ldd /nix/store/gp50cqa35frra2zs3hngm7h8zvk32zlj-nco-4.5.5/bin/ncrename
 linux-vdso.so.1 (0x00007ffd64f57000)
 libnco-4.5.5.so => /nix/store/gp50cqa35frra2zs3hngm7h8zvk32zlj-nco-4.5.5/lib/libnco-4.5.5.so (0x00007f42d83c2000)
 libnetcdf.so.7 => /nix/store/5ypb3jwflgsdkq52hi92n3jx5f1xwjg0-netcdf-4.3.3.1/lib/libnetcdf.so.7
(0x00007f42d506d000)
 libcurl.so.4 => /nix/store/bjvwriaz0dp82bdy00sljxfqvm94pqps-curl-7.50.1/lib/libcurl.so.4 (0x00007f42d4dfa000)
 libgsl.so.19 => /nix/store/fbh3zdyc51lga8qc25ddws70fk157sna-gsl-2.2/lib/libgsl.so.19 (0x00007f42d4999000)
 libgslcblas.so.0 => /nix/store/fbh3zdyc51lga8qc25ddws70fk157sna-gsl-2.2/lib/libgslcblas.so.0 (0x00007f42d475d000)
 libm.so.6 => /nix/store/6fix3zqpnahyml8zp2sxi2rwan55rgb8-glibc-2.24/lib/libm.so.6 (0x00007f42d4458000)
 libudunits2.so.0 => /nix/store/hzqli17ppygls48bx9m4ciiw9kjfz9y1-udunits-2.2.20/lib/libudunits2.so.0
(0x00007f42d423b000)
 libgomp.so.1 => /nix/store/ly5dbisg2h0k3xnfdbk955m3pc4knvjk-gcc-5.4.0-lib/lib/libgomp.so.1 (0x00007f42d401b000)
 libpthread.so.0 => /nix/store/6fix3zqpnahyml8zp2sxi2rwan55rgb8-glibc-2.24/lib/libpthread.so.0 (0x00007f42d3dfe000)
 libc.so.6 => /nix/store/6fix3zqpnahyml8zp2sxi2rwan55rgb8-glibc-2.24/lib/libc.so.6 (0x00007f42d3a60000)
 libstdc++.so.6 => /nix/store/ly5dbisg2h0k3xnfdbk955m3pc4knvjk-gcc-5.4.0-lib/lib/../lib64/libstdc++.so.6
(0x00007f42d36e8000)
 libgcc_s.so.1 => /nix/store/ly5dbisg2h0k3xnfdbk955m3pc4knvjk-gcc-5.4.0-lib/lib/../lib64/libgcc_s.so.1
(0x00007f42d34d1000)
 libhdf5_hl.so.10 => /nix/store/a1lph90xffl82c17n50ivrn74n43ka74-hdf5-1.8.16/lib/libhdf5_hl.so.10
(0x00007f42d32b1000)
 libhdf5.so.10 => /nix/store/a1lph90xffl82c17n50ivrn74n43ka74-hdf5-1.8.16/lib/libhdf5.so.10 (0x00007f42d2e12000)
 libdl.so.2 => /nix/store/6fix3zqpnahyml8zp2sxi2rwan55rgb8-glibc-2.24/lib/libdl.so.2 (0x00007f42d2c0e000)
 libnghttp2.so.14 => /nix/store/clym2g8fdz7r2ys5jfvr05f18cf3dlqv-nghttp2-1.10.0-lib/lib/libnghttp2.so.14
(0x00007f42d29e9000)
 libssh2.so.1 => /nix/store/dyc16j5lpvk9a305h6s0arpglzj4hkf2-libssh2-1.7.0/lib/libssh2.so.1 (0x00007f42d27bb000)
 libssl.so.1.0.0 => /nix/store/55azyw1bcrzn8q5ganaav0cnqs2viwdn-openssl-1.0.2i/lib/libssl.so.1.0.0
(0x00007f42d254d000)
 libcrypto.so.1.0.0 => /nix/store/55azyw1bcrzn8q5ganaav0cnqs2viwdn-openssl-1.0.2i/lib/libcrypto.so.1.0.0
(0x00007f42d2111000)
 libz.so.1 => /nix/store/b5mwbrx8cldkchiqgwgkaagw91xfjr89-zlib-1.2.8/lib/libz.so.1 (0x00007f42d1efb000)
 /nix/store/6fix3zqpnahyml8zp2sxi2rwan55rgb8-glibc-2.24/lib/ld-linux-x86-64.so.2 (0x00007f42d868d000)
 libexpat.so.1 => /nix/store/nq9bc7x8r8xh40yprwdrkbxhmigazwz0-expat-2.2.0/lib/libexpat.so.1 (0x00007f42d1cd1000)

NIX packages: example

{ stdenv, fetchurl, netcdf, netcdfcxx4, gsl, udunits, antlr, which, curl }:

stdenv.mkDerivation rec {
 version = "4.5.5";
 name = "nco";

 buildInputs = [netcdf netcdfcxx4 gsl udunits antlr which curl];

 src = fetchurl {
 url = "https://github.com/nco/nco/archive/${version}.tar.gz";
 sha256 =
"bc6f5b976fdfbdec51f2ebefa158fa54672442c2fd5f042ba884f9f32c2ad666";
 };

 meta = {
 description = "The NCO (netCDF Operator) toolkit manipulates and analyzes
data stored in netCDF-accessible formats, including DAP, HDF4, and HDF5";
 homepage = http://nco.sourceforge.net/;
 license = stdenv.lib.licenses.gpl3;
 maintainers = [stdenv.lib.maintainers.bzizou];
 platforms = stdenv.lib.platforms.linux;
 };
}

development/libraries/nco/default.nix

NIX
● Why is this a good solution?

– Focuses on reproducibility: evertyhing is described into nix derivations (a kind of
recipes for creating packages)

– No side effects: if I change a package, it’s a new package and it does nothing to
other packages depending on the old one (which is kept until no more packages
depend on it)

– Offers an isolated development environment (nix-shell)

– Already +10k packages maintained by a strong community

– Optimized to share binaries and packages definitions among the users (multiuser
mode + binary caches)

– Ease of use

– Ease to contribute (github pull requests)

– Ease of hacking and sharing derivations

– Users can install the same environment on their workstation

NIX

● What do you need to make it available for your users?

– a shared /nix mount on all the nodes

– nix-daemon on one of your head node (+'socat' if you
have several head nodes)

– a local repository (web server) if you want to setup a
custom channel

● to hold packages of non-free applications
● to hold packages variants you've contributed to but

that are not already in the official distribution

NixOS

● NIXOS: the NIX operating system (nix + nixpkgs)

● An OS that natively allows users to install/hack packages
of their choice

● All the system configuration in a file: configuration.nix

CIMENT contributions

● openib support into openmpi
● mpi support into Gromacs
● netcdf support into gdal
● mlx4 support into libibverbs (not yet merged)
● new packages: libmatheval, scotch, nco,

libdap,...
● Non public: Intel 2016 compilers packaging
● A lot more to come!

● You can also contribute!

● Try it! → $ curl https://nixos.org/nix/install | sh

About containers

● Not at the same level: we can have NIXOS images

● Containers still allow you to create black boxes, with no
easy reproducibility: ok to re-use an image, but what about
upgrades or modifying the image 10 years layer?

● Do we need NIXOS inside a container..?

● … or just a cluster under NIXOS?

Thank you !

https://nixos.org/nix/

https://nixos.org/nix/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

