7= Exascale-Lab

sereeereens CEA GENCI INTEL UVSQ

A Decremental Analysis Tool

for
Fine-Grained Bottleneck Detection

Souad Koliait-2 Sébastien Valat!2 Tipp Moseley3

Jean-Thomas Acquaviva?l2 William Jalby?2

lUniversity of Versailles Saint-Quentin-en-Yvelines, France
2Exatec-Lab, France

3Google, Mountain View, CA

Wz

- - —

Out ine
Exatec-

Lab

e Introduction: my personal view on hardware
performance counters

e DECAN: what?
e DECAN: how?

e (Case studies

e Future work

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

How to deal with performance issues (1)

e First (well known) technique: profiling
= Down to a few hot routines
= Then analyze loop behavior
= Four key issues: source code, compiler, OS, hardware

e Second analyze loops statically (source code, compiler
= Static analysis (MAQAO)
= Allows to detect compiler inefficiencies

= Provides performance estimates and bottleneck analysis

e In general discrepancy between static estimates and

measurements
= What is the next step ??
= Use performance counters to get an idea of hardware performance

behavior

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

How to deal with performance issues (2)
Exatec-

Lab

e Once you know the performance issues, analyze/evaluate

them

= Sort them out by performance impact importance (ROI)
= Trade off between cost and potential performance gains

o After performance problem analysis, fix performance issues
= The main “performance knob” at our disposal are instructions

= Change the source code or assembly to remove performance issues

e Importance of ROI (Return On Investment)

= Routine A consumes 40% of execution time and performance gains are
estimated on routine A at 10%: overall gain 4%
= Routine B consumes 20% of execution time and performance gains are

estimated on routine B at 50%: overall gain 10%

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Hardware performance counters/events

Lab

In general, performance events give an aggregate view of

the routine/loop behavior:

= Number of cache misses
= All of the instructions are “lumped” together: no individual

view/report of an instruction
= REMEMBER: our main knob is at instruction level

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection c

Conflict on address disambiguation

Consider the C kernel :

for (inti=0;1<SIZE ; ++1)
a[1] =Db[1—offset]

If we have addresses such as :

a % 4kB = b % 4kB (same low order 12 bits)

With offset = 1, there is a conflict between :
The store a[(i)] from iteration i
The load b[(i+1) - 1] from iteration i+1

THIS IS KNOWN AS THE 4 KB ALIASING PROBLEM

This can be detected with hardware counter :
LOAD_ BLOCK.OVERLAP_STORE

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Performance on Intel CORE 2 duo

alil = b[1 - offget] ; sizeofia,b) = 51FKo
Core 2 Duo

1 4 T T T T T

Huntfme S
LOAD_BLOCK_OVERLAP_STORE —«—

10

Runtime (ticks/loop)

Offset
A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Results Analysis =

Sensible impact up to :

« QOffset =10 In terms of counter
« QOffset =4 In terms of time cost

The counter DETECTS the issue, but not the
COSt.

WHAT WE CARE ABOUT IS PERFORMANCE
IMPACT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Hardware performance counters/events issues (1)

o Detects the source of the problem not the performance

impact
= Counts the number of 4 KB alias conflicts but not the cost
= Counts the number of cache misses not the latency (except EAR on IA64
and mem lat counter on I7) and in fact you want the exposed latency ©

o Sampllng bias and threshold

Quantum measurement: every 100 000 cache misses, update counters
In general unable to assign the cost to the right/offending instruction
Delays between the counter overflow and the interrupt handler

Too many instructions in flight

Several instructions retiring at the same time

IN CONCLUSION BAD ACCOUNTING: NO GOOD CORRELATION WITH

SOURCE CODE

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Hardware performance counters/events issues (2)

o Ot

her Key issues with performance counters/events:
TOO MANY OF PERFORMANCE EVENTS: Over 1200 on core I7

TOO FEW COUNTERS: typically 4, getting values for all events would
require 400 runs

Deals with low level hardware and gives you a fragmented picture: counts
the number of times prefetch are launched including the aborted cases
Documentation is usually poor

Needs to know very well micro architecture and in general corresponding
info is not available

Not consistent across architectures even on successive X86 generations

interesting OLD idea: Profile me (DEC)

Sample instructions
Reports all stalls occurring to an instruction

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Introduction to DECAN (1)

e Be a physicist:
= Consider the machine as a black box
= Send signals in: code fragments
= (Observe/measure signals out: time and maybe other metrics

e Signals in/Signals out
= Slightly modify incoming signals and observe difference/variations in

signals out
= Tight control on incoming signal

e In coming signal: code
= Modify source code: easy but dangerous: the compiler is in the

way
= Modify assembly/binary: much finer control but cautious about

correlation with source code

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Introduction to DECAN (2)

e GOAL 1: detect the offending/delinquent
operations

e GOAL 2: get an idea of potential performance
gain

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-

Lab

e A tool for fine grained detection of the bottleneck (ie.
assembly instruction level)

e Focus on the hottest region of an application using
automatic kernel extraction (AKE)

o DECAN performs on a binary and on loop level

o DECAN uses MAQAO/MADRAS disassembler tool chain

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: General Concept
Exatec-

Lab

e DECAN's concept is simple:

Measure the original binary

Patch the memory access instructions in the original
binary

New binary is generated for each patch
Measure new binaries

Measurements are represented in a CSV file: analysis
and comparison

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection KM

DECAN: Automatic Kernel Extraction 1/2

e Strategy for performance measurements: Automatic
driver to extract a kernel from a given application

e Goal:

= focus on only a small part of the application (the
hottest subroutine = the kernel)

= Extract the kernel and its memory context

= Build a driver to run the kernel in its original execution
environment

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Automatic Kernel Extraction 2/2

o Kernel extraction methodology

Dump the memory context of the kernel using GDB
Dump the parameters addresses of the kernel using GDB
Map the memory context dumped

Pass the parameters addresses dumped to the correct
registers/stack location - generates a caller to the kernel

Original memory context + correct calling convention ->
operational loader

Bypass the main of the original application to branch to the
loader - run the kernel in its original execution environment

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Instruction Removal
Exatec-

Lab

e DECAN focuses on SSE memory access instructions (ie.
SSE loads and stores)

e Memory access instruction patching:
= Replace the memory access instruction by a nop
operation or a pxor to avoid extra dependencies
= Example:

movaps (%rsi), %$xmml > nop r/m or pxor %$xmml, %$xmml
movaps %$xmm2, ($rsi) =2 nop r/m

e Each patched instruction generates a new binary

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Instruction Patching
Exatec-

e If n SSE instructions then n+3 different binaries + tab

grouplng version of binaries are generated:

One_Load binary
= One_Store binary
= All_Loads binary
= All_Stores binary
= All_Loads_Stores binary
= Grouping

e Each new binary has the following file name format:
<func name> loopID OPT

OPT = loads|stores|loads stores]| (1ld|st) @inst 1ineSRC

Example:

rbgauss loop3 1d 0x402f4c 1ine97 =2 in loop 3 of rbgauss
function, the load instruction at 0x402fdc address has

been modified (source line: 97)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Performance Measurement
Exatec-

Lab

e The original binary and the new binaries are measured
using the automatic kernel extraction

e Performance measurements are gathered in a CSV file
e The CSV format allows to make easy the comparison

between the original binary and the modified binaries
and to pinpoint the delinquent memory access instruction

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Case Studies - MAGMA
Exatec-

Lab
MAGMA is an application for the
simulation of casting processes do k = anf3. end3
. do j = anf2, end2
The hottest subroutine in MAGMA do |h Tfar_lfkl, endl "
. . : vhili(l,),k) = temp(l,},K) -
appllcatlon is CGSolv & ((Jac)x(_i-l,j Fj& J))*te(mp(_i-l Jok)
The target loop in CGSolv is Matvec & Hivse I ORIy Aac I
shown in Fig.3 & +acy(i] k)*temp(i j+1k)
& +acz(i ,j ,k-1)*temp(i , ,k-1)
_ & +acz(i ,) ,k)*temp(i , ,k+1))
Applying DECAN on Matvec &)/ coeffd(i,},k)
generates a set of binaries (when . $hdd°
modifying memory access end do
instructions)
Performance measurements are Fig. 3. Target Loop In CGSolv

gathered in MATVEC.csv file

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Impact of load/store instructions on Matvec subroutine

[=]
=
=]
=]
=]

matvec_lbop2_ld_0x403dd3
matvec_kbop2_ld_0x403dda
matvec_kop2_ld_0x403de1
matvec_lbop2_ld_0x403der
matvec_kbop2_ld_0x403des
matvec_loop2_|d_0x402d2
matvec_lbop2_ld_0x403e02
matvec_kbop2_ld_0x403e03
matvec_kbop2_ld_0x403e12
matvec_kbop2_ld_0x403e1c
matvec_kbop2_ld_0x403e25
matvec_kbop2_ld_0x403e2c
matvec_lbop2_ld_0x403e35

matvec_kbop2_ld_0x403eS0

3
=%
-
m
(]
=3
=]
=
.
=3
o
=%
W

Transformed binaries generated by DECAN

matvec_loopZ2_st_0x403e5a

matvec_loop2_stores (I
matvec_lbop?_stores_loads |

=

10 20 30 40 30

Cycles

60

21

DECAN: Case Studies - MAGMA
Exatec-

Lab

e When replacing one load at the same time, there is some
performance impact of the replaced load : however some loads
have a larger impact than others

e When replacing all loads, performance is improved by a factor
of 2.5

* When replacing A SINGLE store, performance is improved by a
factor of 2.5 = this store seems to be the bottleneck.

e (Conclusion: the conflict between the loads and a store seems to
be the bottleneck !

e A 4K-aliasing load-store conflict between vhilf (the array being
stored), temp and acx (the arrays being loaded).

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Case Studies - RECOM
Exatec-

Lab
RECOM application builds a 3D-
model of industrial-scale furnaces. DO TDO=1,NRELD
. . INC = TNDINE. (IDO)
The hottest subroutine in Recom
application is RBgauss HANB = BM(INC,1)*PHI(INCHl) &
+ BM(INC,2)*PFHI (INC-1) &
The target loop in RBgauss is + EM(INC, 3) *PHI (INC+INED) &
. . + BEM(INC,4)*PHI (INC-INFD) &
shown in Fig.1 + BM(INC,5) *PHI (INCHNIT) &
+ BEM(INC, 6) *FHI (INC-NIJ) &
3D structures (arrays, loops) are + SU(INC)
linearized DLTEHI = UREL*(HANB/AM(INC,7) — PHI(INC))

PHI (INC) = PHI(INC) + DLTPHI

Regular geometry but with
RESI = EESI + RBS(OLTPHI)

holes: use of indirect access to RSUM = RSUM + ABS (FHI (INC))
jump over holes ENDDO
RB stands for Red Black: many Fig. 1. Target Loop in RBgauss

access are stride 2

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Impact of load/store instructions on RBgauss subroutine

original
rbgauss loopl | Oxd02c27 lineSs
rbgauss loopl_ld Oxd02c2e linedd
rbgauss loop0 ld Oxd402c3S linedd
rbgauss loopl | Oxd402c3b linedd
rbgauss loopl_ld Ox402c42 linedd
rbgauss loopl_ld 0x402c4% lineS0
rbgauss loopl_ld 0x402cS0_lineS0
rbgauss loopl_ld 0x402cS7 _lineS
rbgauss loopl_ld 0x402cte linedd
rbgauss loopl_ld_0=402085_lineS2
rbgauss loopl_ld Ox402c8c lineS2
rbgauss loopl ld 0x402c73 lineS3
rbgauss loopl ld Ox402cTa_lineS3
rbgauss loopl_ld Ox402cha_lineds
rbgauss loopl_ld Ox402cad lineSs
rbgauzs loopl i 0x40Zcbf [nedd
rbgauss loopld i _(=d0Zcce_line100

Transformed binaries generated by DECAMN

rbgauss loopl_loads
rbgauss loopl st Oxd02ccy _lineS7
rbgauss |oopl_stores

regauss loopl_storez_loads

=
en
—
=1
—
[T
[
en
[
=
E

DECAN refinement: instruction grouping

e An example:
= B(i) = A(I) + A(I+1)
= Let us assume A coming from memory: 1 miss followed by a hit
= Nopping A(I) generates one miss A(I+1)
= Nopping A(I+1) generates one miss on A(I)

e Basic idea of grouping
= Group together loads which are dependant upon each other
= Group loads accessing the same array

e How to implement grouping
= Analyze start array address
= Group together loads which corresponds to “close” start array

address

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

original

rbgauss_ loop0_loads_AM

rbgauss_ loop0_loads

Recom application - Grouping of SSE memory instructions
that access to the same base address (AM array)

(=]

Cycles

G0

DECAN: Case Studies - RECOM
Exatec-

Lab
e When nooping one load at the same time, there is limited effect
of the nopped load.

e When replacing all loads, performance is improved by a factor
of 1.75

e Grouping shows that most of the performance loss is associated
with access to a 1D array : AM

e (Conclusion: AM access seems to be the bottleneck !

e A memory trace tool is used to detect how AM is accessed

e AM is accessed with a STRIDE 2 !: solution: restructure splitting
AM into two distinct arrays: one for the RED, one for the BLACK

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN: Case Studies - RECOM

Lab

Limiting array restructuring
to AM is much simpler: read
only structure

Restructuring PHI is much
harder: complex access and
read/write operations

DO IDO=1,NRELD

INC = INDINR(IDO)

HENBE = ABM(INC,1)*PHI(INC+l) =&
+ AM(INC,2)*PHI(INC-1) &
+ BM(INC,3)*PHI (INC+INPD) &
+ AM(INC,4)*PHI (INC-INPD) &
+ AM(INC,S)*PHI (INCHNIJ) &
+ AM(INC, o) *PHI (INC-NIJ) &
+ SU(INC)

DLTPHI = UREL*(HENB/EM(INC,7) — PHI(INC))
PHT (INC) = PHI(INC) + DLTPHI

EESI = BESI + ABS(DLTFHI)
RSUM = RSUM + RBS(PHI (INC))

ENDDO

Fig. 1. Target Loop in RBgauss

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Speedup

.00

5.00

4.00

3.00

200

0.00

Recom application

1 2 3 4

Number of Threads

B Recom original B Recom optimized

DECAN: Case Studies - DASSAULT

DASSAULT application solves
the Navier-Stokes equation
using computational fluid

dynamics based on an iterative

solver

The hottest subroutine in
Dassault application is Eufluxm

The target loop in Eufluxm is
shown in Fig.2

Bad access (strides) to arrays

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

do ob=1,ncht
igp = isg
isg = icolb(ichtl)
igt = i=g + igp
c30MP FARALLEL DO DEFAULT [KOKE)

oSOMEL JHARED (1gt, igp, nnbar, vecy, vecx, ompu, ompl]

ci0MPe PRIVATE (ig,=,1,7,k,1)
do ig=1,igt

e = ig t igp

i = nnbar(=,1]

7 = nnbar (e, 2]
cDECS IVLER

do k=1,ndof
c[ECS IVIER

do 1=1,ndof

Exatec-
Lab

vecy (i, k] = vecy(i k] + ompu (e, k1] *vecx(j, 1]
vecy .k} = wecy(j,k} + ompl (e k,l)}*vecx(1,1]

EnOQD
anddo
anddo
anddo

Fig. 2. Target Loop in Eufluxm

Transformed binaries generated by DECAMN

Impact of load/store instructions on Eufiuxm subroutine

original

eufluxm__loopd _0x405%ed7_lined2
eufiuxm__loopd_|d_0x405edd lined2
eufiuxm__loopd |d_0x405eed linedd
elfuxm__loopd_ld_0x405eef_linedd
eufuxm__loopd_ld_0x405e5_lineds
elfuxm__loopd_ld_(x405et_lined2
eufluxm__loopd_ld_x405703_linedd
eufluxm__loopd_ld_(x40585_linedd
eufluxm__loopd i_0x405f33 lined2
eufluxm__loopd K_0x405f88 linedd
eufuxm__loop3 _loads
eufluxm__ loopd =t (405712 _lined2
eufluxm__loopd =t (4058 linedd
eufluxm__loopd =t (40538 _lined2
eufluxm__ loopd =t (e4058d_lined3
eufixm__loop3_stores

eufuxm__loopd_stores loads

[]

—
=

Cycles

—
n

3
[=1

kR

(]
=]

original

eufluxm__loop3_loads_ompu_ompl

eufluxm__loop3_loads

0

DASSAULT application - Grouping SSE memory instructions
that access to the same base address (ompu & ompl arrays)

Cycles

35

DECAN: Case Studies - DASSAULT
Exatec-

Lab

e When replacing one load at the same time, there is no effect of
the replaced load.

e When replacing all loads, performance is improved by a factor
of 3 2 some “dependent” loads seem to be the bottleneck.

e Grouping shows that most of the performance loss is due to
access to two 3D arrays : ompu & ompl

e Conclusion: ompu & ompl access seems to be the bottleneck !

A memory trace tool is used to detect how these arrays are
accessed: Ompl & ompu are accessed with a LARGE STRIDE !
(iterating on the wrong dimension)

e Only ompu and ompl need to be restructured

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

2.80

2.00

Speedup

0.50

0.00

Dassault application

1 2 3 4

Mumber of Threads

B Dassault original B Dassault optimized

Increasing DECAN functionalities (1)
Exatec-

Lab

e Compare performance impact with microbenchmark

results
= Use to detect/guess operand location: L1, L2, L3, RAM

= Use to evaluate prefetch efficiency

° Go beyond nopping:
Instead of a NOP use a register move (pay attention to
dependencies)
= Instead of a NOP, perform an access to a given (invariant
memory location on the stack (keep cache access latency impact)

e NOP other instructions than memory operations
= Arithmetic complex instructions: divide, square root

= Analyze impact of out of order

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Increasing DECAN functionalities (2)
Exatec-

Lab

e NOP branches

= Two variants: force fall through or taken branch
= Analyze impact of branch misprediction

e Detection of multicore issues:
= Detection of false sharing
= Detection of contention

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN limitations (1)
Exatec-

Lab

e Dealing with side effects:
= "Nopping” instructions is not exactly neutral
= Large set of experiments allows to “recoup”

e SEMANTICS is lost

= From a performance point of view, limited importance
but pay attention to some corner cases
= Some experiments in the DECAN series can crash: for

example NOP the access to indirection vectors

e Dealing with If within loop bodies
= Typical case: if (A(I)) > 0) THEN ELSE
= Nopping A(I) is equivalent to Nopping the branch

= DECAN provides info but care has to be taken

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

DECAN limitations (2)
Exatec-

Lab

o DECAN is a microscope: applicable to loops only
= Needs to be coupled with good profiling

e Measurement accuracy
= Let us think of a loop with 200 vector loads,
= Some experiments in the DECAN series can crash: for

example NOP the access to indirection vectors

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-

Lab
e VTune is an event-based sampling tool that uses hardware

counters
e VTune collects data from processor using timer interrupts

e RBgauss and EUFLUXm routines are profiled with VTune
(Fig. 1 & Fig. 2)

e VTune detect a large set of instructions that are not all
delinquent

e This inaccuracy is inherent to any sampling scheme

o Sampling is useful for a broad diagnostic when DECAN
gives a more precise bottleneck detection

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

E] F ¢ &% Y 1

Source CPU _CLE UMNHALTED

D
n'ﬂ

0x2C27 90 S

I._;|'| =
|I|
=]

of N o

= EI C:I
CO sl |- I:l"l

) EEe O
ey of

—

|_..|

Fig. 1. RBgauss profiled with VTune

40

14 4 b ¢ & % Y B S

Il
u
= gl
il
({1

Addres= 1T Source CPU_CLE UNHALTED
Ox2F0& 83 eufluxm +0x456 mov sd -8 (%rbx, %rd [1.39%
Ox2FOC B2 movad -8 (%rbp, S%rl5, 1), %S%xmmO 1.33%

Ox2F13

Ox2F42 B3
Ox2F4D 832

mov sl FxmmD, -8(%rl2, Srdi, 1) 0.03%
m1l=cl FEmma , SHxmm3 0.82%

Fig. 2. EUFLUXm profiled with VTune

41

Conclusion & Future Work
Exatec-

Lab

DECAN: a tool for automatic decremental performance
analysis.

DECAN identifies delinqguent memory operations
DECAN gets an estimate of potential performance gain
Test DECAN on more applications

Improve user feedback: synthesis of DECAN results

Extend DECAN to address branch instructions to detect miss-
prediction

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

ANNOUNCEMENT
Exatec-

Lab

o EXATEC LAB grand opening will take place on October
25t at UVSQ in Versailles

e You are all invited and welcome!!

e See http://www.uvsq.fr : front page

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Questions ?

44

Runtime (ticks/loop)

Testing on Intel Core 17

14

12

10

alil

bl i - offset]

core iY

: sizeof(a,b) = 51FKo

2Co ~00 —+—
goo —01 ——
gco —02 —#—

-;fh\k—k—k—Fﬂ~4~4ﬁ4—+=+=+ﬁ+ghhkfk—haPﬂk4f4—+~+f+a%fhqhﬁfifigﬁﬂz%}__

10

15

Offset

20

23

40

a5

All optimization on Intel Core 2
Duo

ali] = bl i - offset] ; sizeof{a,h) = 512Ko
Core 2 Duo

1 4 } })) } I
goco —00 ——
| goo —01 —»—
12 L4 goo —02 —%—

goo

Funtime (tickssloop)

Offset

Introduction
Exatec-

Lab

e Optimization process:
= Gathering data (ie. code characterization)
= Diagnosing the problem
= Prescribing a solution

e Tedious process
= Complex modern processors
= Limited existing methodologies

= Performance counters not up to the job

e Characterization process
= Code analysis to extract code characteristics
= Applying different types of code analysis

= Get different views of the code behavior

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

