
1

A Decremental Analysis Tool
for

Fine-Grained Bottleneck Detection

Souad Koliaï1,2 Sébastien Valat1,2 Tipp Moseley3

Jean-Thomas Acquaviva1,2 William Jalby1,2

1University of Versailles Saint-Quentin-en-Yvelines, France

2Exatec-Lab, France

3Google, Mountain View, CA

Exascale-Lab
CEA GENCI INTEL UVSQ

2

Outline

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Introduction: my personal view on hardware
performance counters

• DECAN: what?

• DECAN: how?

• Case studies

• Future work

Exatec-
Lab

3

How to deal with performance issues (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• First (well known) technique: profiling
 Down to a few hot routines
 Then analyze loop behavior
 Four key issues: source code, compiler, OS, hardware

• Second analyze loops statically (source code, compiler
 Static analysis (MAQAO)
 Allows to detect compiler inefficiencies

 Provides performance estimates and bottleneck analysis

Exatec-
Lab

• In general discrepancy between static estimates and
measurements
 What is the next step ??
 Use performance counters to get an idea of hardware performance

behavior

4

How to deal with performance issues (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Once you know the performance issues, analyze/evaluate
them
 Sort them out by performance impact importance (ROI)
 Trade off between cost and potential performance gains

Exatec-
Lab

• After performance problem analysis, fix performance issues
 The main “performance knob” at our disposal are instructions

 Change the source code or assembly to remove performance issues

• Importance of ROI (Return On Investment)
 Routine A consumes 40% of execution time and performance gains are

estimated on routine A at 10%: overall gain 4%
 Routine B consumes 20% of execution time and performance gains are

estimated on routine B at 50%: overall gain 10%

5

Hardware performance counters/events

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

In general, performance events give an aggregate view of
the routine/loop behavior:

 Number of cache misses
 All of the instructions are “lumped” together: no individual

view/report of an instruction
 REMEMBER: our main knob is at instruction level

Exatec-
Lab

6

Conflict on address disambiguation

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Consider the C kernel :

If we have addresses such as :

With offset = 1, there is a conflict between :
The store a[(i)] from iteration i
The load b[(i+1) - 1] from iteration i+1

THIS IS KNOWN AS THE 4 KB ALIASING PROBLEM

This can be detected with hardware counter :
LOAD_BLOCK.OVERLAP_STORE

for (int i = 0 ; i < SIZE ; ++i)
a[i] = b[i – offset]

a % 4kB = b % 4kB (same low order 12 bits)

7

Performance on Intel CORE 2 duo

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

8

Results Analysis

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Sensible impact up to :

• Offset = 10 in terms of counter
• Offset = 4 in terms of time cost

The counter DETECTS the issue, but not the
cost.

WHAT WE CARE ABOUT IS PERFORMANCE
IMPACT

9

Hardware performance counters/events issues (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Detects the source of the problem not the performance
impact
 Counts the number of 4 KB alias conflicts but not the cost
 Counts the number of cache misses not the latency (except EAR on IA64

and mem lat counter on I7) and in fact you want the exposed latency 

• Sampling bias and threshold
 Quantum measurement: every 100 000 cache misses, update counters
 In general unable to assign the cost to the right/offending instruction
 Delays between the counter overflow and the interrupt handler
 Too many instructions in flight
 Several instructions retiring at the same time
 IN CONCLUSION BAD ACCOUNTING: NO GOOD CORRELATION WITH

SOURCE CODE

Exatec-
Lab

10

Hardware performance counters/events issues (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Other Key issues with performance counters/events:
 TOO MANY OF PERFORMANCE EVENTS: Over 1200 on core I7
 TOO FEW COUNTERS: typically 4, getting values for all events would

require 400 runs
 Deals with low level hardware and gives you a fragmented picture: counts

the number of times prefetch are launched including the aborted cases
 Documentation is usually poor
 Needs to know very well micro architecture and in general corresponding

info is not available
 Not consistent across architectures even on successive X86 generations

Exatec-
Lab

• An interesting OLD idea: Profile me (DEC)
 Sample instructions

 Reports all stalls occurring to an instruction

11

Introduction to DECAN (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Be a physicist:
 Consider the machine as a black box
 Send signals in: code fragments
 Observe/measure signals out: time and maybe other metrics

• Signals in/Signals out
 Slightly modify incoming signals and observe difference/variations in

signals out

 Tight control on incoming signal

Exatec-
Lab

• In coming signal: code
 Modify source code: easy but dangerous: the compiler is in the

way
 Modify assembly/binary: much finer control but cautious about

correlation with source code

12

Introduction to DECAN (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• GOAL 1: detect the offending/delinquent
operations

• GOAL 2: get an idea of potential performance
gain

Exatec-
Lab

13

DECAN: What?

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• A tool for fine grained detection of the bottleneck (ie.
assembly instruction level)

• Focus on the hottest region of an application using
automatic kernel extraction (AKE)

• DECAN performs on a binary and on loop level

• DECAN uses MAQAO/MADRAS disassembler tool chain

Exatec-
Lab

14

DECAN: General Concept

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• DECAN’s concept is simple:

 Measure the original binary

 Patch the memory access instructions in the original
binary

 New binary is generated for each patch

 Measure new binaries

 Measurements are represented in a CSV file: analysis
and comparison

Exatec-
Lab

15

DECAN: Automatic Kernel Extraction 1/2

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• Strategy for performance measurements: Automatic
driver to extract a kernel from a given application

• Goal:

 focus on only a small part of the application (the
hottest subroutine = the kernel)

 Extract the kernel and its memory context

 Build a driver to run the kernel in its original execution

environment

16

DECAN: Automatic Kernel Extraction 2/2

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• Kernel extraction methodology

 Dump the memory context of the kernel using GDB

 Dump the parameters addresses of the kernel using GDB

 Map the memory context dumped

 Pass the parameters addresses dumped to the correct
registers/stack location  generates a caller to the kernel

 Original memory context + correct calling convention 

operational loader

 Bypass the main of the original application to branch to the
loader  run the kernel in its original execution environment

17

DECAN: Instruction Removal

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• DECAN focuses on SSE memory access instructions (ie.
SSE loads and stores)

• Memory access instruction patching:
 Replace the memory access instruction by a nop
operation or a pxor to avoid extra dependencies
 Example:

movaps (%rsi),%xmm1  nop r/m or pxor %xmm1, %xmm1
movaps %xmm2,(%rsi)  nop r/m

• Each patched instruction generates a new binary

Exatec-
Lab

18

DECAN: Instruction Patching

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• If n SSE instructions then n+3 different binaries +
grouping version of binaries are generated:
 One_Load binary
 One_Store binary
 All_Loads binary
 All_Stores binary
 All_Loads_Stores binary
 Grouping

• Each new binary has the following file name format:
<func_name>_loopID_OPT

OPT = loads|stores|loads_stores|(ld|st)_@inst_lineSRC

Example:
rbgauss_loop3_ld_0x402f4c_line97  in loop 3 of rbgauss

function, the load instruction at 0x402f4c address has

been modified (source line: 97)

Exatec-
Lab

19

DECAN: Performance Measurement

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• The original binary and the new binaries are measured
using the automatic kernel extraction

• Performance measurements are gathered in a CSV file

• The CSV format allows to make easy the comparison
between the original binary and the modified binaries
and to pinpoint the delinquent memory access instruction

Exatec-
Lab

20

DECAN: Case Studies - MAGMA

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• MAGMA is an application for the
simulation of casting processes

• The hottest subroutine in MAGMA
application is CGSolv

• The target loop in CGSolv is Matvec
shown in Fig.3

• Applying DECAN on Matvec
generates a set of binaries (when
modifying memory access
instructions)

• Performance measurements are
gathered in MATVEC.csv file

Fig. 3. Target Loop in CGSolv

do k = anf3, end3
do j = anf2, end2

do i = anf1, end1
vhilf(i,j,k) = temp(i,j,k) - (

& (acx(i-1,j ,k) * temp(i-1 ,j ,k)
& + acx(i ,j ,k) * temp(i+1,j ,k)
& + acy(i ,j-1,k) * temp(i ,j-1,k)
& + acy(i ,j ,k) * temp(i ,j+1,k)
& + acz(i ,j ,k-1) * temp(i ,j ,k-1)
& + acz(i ,j ,k) * temp(i ,j ,k+1))
&) / coeffd(i,j,k)

end do
end do

end do

21

22

DECAN: Case Studies - MAGMA

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• When replacing one load at the same time, there is some
performance impact of the replaced load : however some loads
have a larger impact than others

• When replacing all loads, performance is improved by a factor
of 2.5

• When replacing A SINGLE store, performance is improved by a
factor of 2.5  this store seems to be the bottleneck.

• Conclusion: the conflict between the loads and a store seems to
be the bottleneck !

• A 4K-aliasing load-store conflict between vhilf (the array being
stored), temp and acx (the arrays being loaded).

23

DECAN: Case Studies - RECOM

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• RECOM application builds a 3D-
model of industrial-scale furnaces.

• The hottest subroutine in Recom
application is RBgauss

Fig. 1. Target Loop in RBgauss

• The target loop in RBgauss is
shown in Fig.1

• 3D structures (arrays, loops) are
linearized

• Regular geometry but with
holes: use of indirect access to
jump over holes

• RB stands for Red Black: many
access are stride 2

24

25

DECAN refinement: instruction grouping

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• An example:
 B(i) = A(I) + A(I+1)
 Let us assume A coming from memory: 1 miss followed by a hit
 Nopping A(I) generates one miss A(I+1)
 Nopping A(I+1) generates one miss on A(I)

• Basic idea of grouping
 Group together loads which are dependant upon each other

 Group loads accessing the same array

Exatec-
Lab

• How to implement grouping
 Analyze start array address
 Group together loads which corresponds to “close” start array

address

26

27

DECAN: Case Studies - RECOM

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• When nooping one load at the same time, there is limited effect
of the nopped load.

• When replacing all loads, performance is improved by a factor
of 1.75

• Grouping shows that most of the performance loss is associated
with access to a 1D array : AM

• Conclusion: AM access seems to be the bottleneck !

• A memory trace tool is used to detect how AM is accessed

• AM is accessed with a STRIDE 2 !: solution: restructure splitting
AM into two distinct arrays: one for the RED, one for the BLACK

28

DECAN: Case Studies - RECOM

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Fig. 1. Target Loop in RBgauss

• Limiting array restructuring
to AM is much simpler: read
only structure

• Restructuring PHI is much
harder: complex access and
read/write operations

29

30

DECAN: Case Studies - DASSAULT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• DASSAULT application solves
the Navier-Stokes equation
using computational fluid
dynamics based on an iterative
solver

• The hottest subroutine in
Dassault application is Eufluxm

• The target loop in Eufluxm is
shown in Fig.2

• Bad access (strides) to arrays
Fig. 2. Target Loop in Eufluxm

31

32

33

DECAN: Case Studies - DASSAULT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• When replacing one load at the same time, there is no effect of
the replaced load.

• When replacing all loads, performance is improved by a factor
of 3  some “dependent” loads seem to be the bottleneck.

• Grouping shows that most of the performance loss is due to
access to two 3D arrays : ompu & ompl

• Conclusion: ompu & ompl access seems to be the bottleneck !

• A memory trace tool is used to detect how these arrays are
accessed: Ompl & ompu are accessed with a LARGE STRIDE !
(iterating on the wrong dimension)

• Only ompu and ompl need to be restructured

34

35

Increasing DECAN functionalities (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Go beyond nopping:
 Instead of a NOP use a register move (pay attention to

dependencies)
 Instead of a NOP, perform an access to a given (invariant

memory location on the stack (keep cache access latency impact)

• NOP other instructions than memory operations
 Arithmetic complex instructions: divide, square root

 Analyze impact of out of order

Exatec-
Lab

• Compare performance impact with microbenchmark
results
 Use to detect/guess operand location: L1, L2, L3, RAM

 Use to evaluate prefetch efficiency

36

Increasing DECAN functionalities (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Detection of multicore issues:
 Detection of false sharing
 Detection of contention

Exatec-
Lab

• NOP branches
 Two variants: force fall through or taken branch

 Analyze impact of branch misprediction

37

DECAN limitations (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Dealing with side effects:
 “Nopping” instructions is not exactly neutral
 Large set of experiments allows to “recoup”

• Dealing with If within loop bodies
 Typical case: if (A(I)) > 0) THEN …. ELSE
 Nopping A(I) is equivalent to Nopping the branch

 DECAN provides info but care has to be taken

Exatec-
Lab

• SEMANTICS is lost
 From a performance point of view, limited importance

but pay attention to some corner cases
 Some experiments in the DECAN series can crash: for

example NOP the access to indirection vectors

38

DECAN limitations (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• DECAN is a microscope: applicable to loops only
 Needs to be coupled with good profiling

Exatec-
Lab

• Measurement accuracy
 Let us think of a loop with 200 vector loads,
 Some experiments in the DECAN series can crash: for

example NOP the access to indirection vectors

39

DECAN Vs VTune

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• VTune is an event-based sampling tool that uses hardware
counters

• VTune collects data from processor using timer interrupts

• RBgauss and EUFLUXm routines are profiled with VTune
(Fig. 1 & Fig. 2)

• VTune detect a large set of instructions that are not all
delinquent

• This inaccuracy is inherent to any sampling scheme

• Sampling is useful for a broad diagnostic when DECAN
gives a more precise bottleneck detection

40

Fig. 1. RBgauss profiled with VTune

41

Fig. 2. EUFLUXm profiled with VTune

42

Conclusion & Future Work

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• DECAN: a tool for automatic decremental performance
analysis.

• DECAN identifies delinquent memory operations

• DECAN gets an estimate of potential performance gain

• Test DECAN on more applications

• Improve user feedback: synthesis of DECAN results

• Extend DECAN to address branch instructions to detect miss-
prediction

43

ANNOUNCEMENT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• EXATEC LAB grand opening will take place on October
25th at UVSQ in Versailles

• You are all invited and welcome!!

• See http://www.uvsq.fr : front page

4444

Questions ?

Testing on Intel Core i7

All optimization on Intel Core 2
Duo

47

Introduction

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Optimization process:
 Gathering data (ie. code characterization)
 Diagnosing the problem
 Prescribing a solution

• Tedious process
 Complex modern processors
 Limited existing methodologies

 Performance counters not up to the job

Exatec-
Lab

• Characterization process
 Code analysis to extract code characteristics
 Applying different types of code analysis

 Get different views of the code behavior

