Parallel Codes and High Performance Computing: Massively parallelism and Multi-GPU

Luigi Genovese

L_Sim – CEA Grenoble

October 10, 2012
A basis for nanosciences: the BigDFT project

STREP European project: BigDFT(2005-2008)

Four partners, 15 contributors:
CEA-INAC Grenoble (T.Deutsch), U. Basel (S.Goedecker),
U. Louvain-la-Neuve (X.Gonze), U. Kiel (R.Schneider)

Aim: To develop an ab-initio DFT code based on Daubechies Wavelets, to be integrated in ABINIT.

BigDFT 1.0 → January 2008

... Not only a DFT adventure.

In this presentation

- Present HPC scenario
- Developers’ and users’ challenges
- Outcomes and general considerations
Ab initio calculations with DFT

Several advantages

- **Ab initio**: No adjustable parameters
- **DFT**: Quantum mechanical (fundamental) treatment

Main limitations

- Approximated approach
- Requires high computer power, limited to few hundreds atoms in most cases

Wide range of applications: nanoscience, biology, materials
Outline

1. Parallel computing and architectures
 - From past to present: software
 - HPC nowadays
 - Memory bottleneck

2. (DFT) Developer point of view
 - Future Scenarios
 - Present Situation
 - Optimization

3. User viewpoint
 - Frequent mistakes
 - Performance evaluation
 - A (old) example S_GPU library

4. Performances
 - Recent situation: Evaluating GPU gain
 - Practical cases

5. Conclusion and Messages
What is Parallel Computing?

Easy to say...
Simultaneous use of multiple compute resources to solve a computational problem

...but not so easy to implement
- A problem is broken in multiple parts which can be solved concurrently
- Each part is associated to a series of instructions
- Instruction from each part are executed simultaneously on different Compute Processing Units
A computing machine (node) is made of:

- Control Unit
- Arithmetic Logic Unit
- Memory Unit

They might exist in different ratio of different architectures

After all, they are transistors

What does technology offer us?
Power is the limiting factor (around 100 W nowadays)

\[\text{Power} \propto \text{Frequency}^3 \]

Clock rate is limited

Multiple slower devices preferable than one superfast device

More performance with less power \(\rightarrow\) software problem?
Why software problem?

The power cost of frequency

<table>
<thead>
<tr>
<th></th>
<th>Cores</th>
<th>Hz</th>
<th>(Flop/s)</th>
<th>W</th>
<th>Flop/s/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superscalar</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>3.3</td>
<td>0.45</td>
</tr>
<tr>
<td>Multicore</td>
<td>2</td>
<td>0.75</td>
<td>1.5</td>
<td>0.8</td>
<td>1.88</td>
</tr>
</tbody>
</table>

Exercise:

- Take a given computational problem
- Write a code at a time t_0. Solve the problem on a computer.
- Freeze your code and wait some time $t_1 - t_0$
- Take a **new** computer at time t_1. Solve again the **same** problem.
- **What happens to your performances?**
HPC thumb-rules have changed

Frequency-dominated era
- Parallelism is not improved by the architecture
- Frequency increases \rightarrow No. Flop/s increases
- Code runs faster

Manycore era
- Parallelism is *dramatically changed* in the architecture
- Frequency *decreases*
- Code runs *slower*
- The code should be changed

The parallel behaviour of a code (oversimplification)
- Capacity computing: many independent jobs
- Capability computing: single job, parallel intensive
How to parallelize your data?

Distributed Memory
- Private Memory
- Processors operate independently
- Data transfer should be programmed explicitly (MPI)
- Relies (also) on network performances

Shared Memory
- Memory is common to all processors
- Threads operate concurrently on data
- Relies on bandwidth performances

Memory operations are crucial for parallelism
The cost of the memory transfer

1W × 1 Year = 1$ (neglecting cooling and storage)

Some facts about memory transfer: Memory bandwidth

- 40 GB/s (CPU); 20 GB/s (RAM); 3.5 GB/s (interconnect)
- Bandwidth evolves less faster than computational power:
 - ✔ ~90’s (Math co-processor): 1 Flop/s each 4 Bytes transferred
 - ✗ Nowadays: 62 Flop/s per Bytes transferred

The cost in energy of data movement

- Computation: a FMA costs now 100 pJ (10 pJ in the future)
 - Move data in RAM costs 4.8 nJ (1.92 nJ)
 - Communicating data (MPI) costs 7.5 nJ (2.5 nJ)

Moore’s law revisited:
 - Thread number executions will double each year

A complicated scenario for HPC (with ab initio) codes
World Top Supercomputer Ranking

Some considerations:

- **Faster** than Moore’s law (doubles every 14 months)
- In 8 years top 1 goes off the list
- Hybrid (CPU/GPU) architectures are emerging

Top500

Faster than Moore’s law (doubles every 14 months)

In 8 years top 1 goes off the list

Hybrid (CPU/GPU) architectures are emerging
Distribute the data on hybrid supercomputer

How a code can be executed on hybrid CPU-GPU architectures?

Data transfer is still MPI-based

Only on-board communication between GPU and CPU

Data distribution should depend on the presence of GPUs on the nodes → Multilevel parallelization required
Hybrid Supercomputing nowadays

GPGPU on Supercomputers

- Traditional architectures are somehow saturating
 More cores/node, memories (slightly) larger but not faster
- Architectures of Supercomputers are becoming hybrid
 3 out to 5 Top Supercomputers are hybrid machines
- Extrapolation: In 2015, No. 500 will become petaflopic
 Likely it will be a hybrid machine

Codes should be conceived differently

- # MPI processes is limited for a fixed problem size
- Performances increase only by enhancing parallelism
- Further parallelisation levels should be added (OpenMP, GPU)

Does (electronic structure calculations) codes are suitable?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim

Luigi Genovese
Future scenarios for the supercomputing

<table>
<thead>
<tr>
<th>Exascale is foreseen for 2018: we cannot wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation: limited money (200 M$) and power (20 MW)</td>
</tr>
<tr>
<td>How can you get exascale (1000 times more powerful)?</td>
</tr>
<tr>
<td>- 100 times more memory</td>
</tr>
<tr>
<td>- $100 \times$ for bandwidth</td>
</tr>
<tr>
<td>- Interrupt time 10 times smaller (one each day)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Blue-Gene like scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 thousands nodes with 1000 cores on it</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The GPU-like scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 thousands node with 10 thousands "cores"</td>
</tr>
</tbody>
</table>

First observations:
- Huge thread concurrency
- Fault resilience might become crucial
Future problems from the supercomputing

- **Architectures change** *way* faster than codes
 - Number of CPU hours is increasing
 - Should not be scared in asking Mhours

- **Which scientific codes are exempted?**
 - Might we ignore this? What is the price to pay?
 - Produce new science by preserving system size
 (possible only for new scientific domains)
 - Stop coding \rightarrow Parallelism is not altered
 “Easy” things have already been done \rightarrow life is hard

- **This approach cannot last: a (yet) new challenge**
 - Architectures for HPC are *market* driven
 - Low-power is now dominating (smartphones)

BigDFT on ARM architecture: 1/30 of Power, 10 times slower!
How far is petaflop (for DFT)?

At present, with traditional architectures

Routinely used DFT calculations are:

- Few dozens (hundreds) of processors
- Parallel intensive operations (blocking communications, 60-70 percent efficiency)
- Not freshly optimised (legacy codes, monster codes)

Optimistic estimation: 5 GFlop/s per core × 2000 cores × 0.9 = 9 TFlop/s = 200 times less than Top 500’s #3!

It is such as

Distance Earth-Moon = 384 Mm
Distance Earth-Mars = 78.4 Gm = 200 times more

Moon is reached... can we go to Mars? (... in 2015?)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim
Luigi Genovese
Using GPUs in a given (DFT) code

Developer and user dilemmas
- Does my code fits well? For which systems?
- How much does porting costs?
- Should I always use GPUs?
- How can I interpret results?

Evaluating GPU convenience
Three levels of evaluation
1. Bare speedups: GPU kernels vs. CPU routines
 Does the operations are suitable for GPU?
2. Full code speedup on one process
 Amdahl’s law: are there hot-spot operations?
3. Speedup in a (massively?) parallel environment
 The MPI layer adds an extra level of complexity
Case study: 1D convolutions (BigDFT code)

Initially, naive routines (FORTRAN?)

\[y(j, l) = \sum_{\ell=L}^{U} h_\ell x(l + \ell, j) \]

- Easy to write and debug
- Define reference results

Optimisation can then start (Ex. X5550, 2.67 GHz)

<table>
<thead>
<tr>
<th>Method</th>
<th>GFlop/s</th>
<th>% of peak</th>
<th>SpeedUp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive (FORTRAN)</td>
<td>0.54</td>
<td>5.1</td>
<td>1/(6.25)</td>
</tr>
<tr>
<td>Current (FORTRAN)</td>
<td>3.3</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>Best (C, SSE)</td>
<td>7.8</td>
<td>73</td>
<td>2.3</td>
</tr>
<tr>
<td>OpenCL (Fermi)</td>
<td>97</td>
<td>20</td>
<td>29 (12.4)</td>
</tr>
</tbody>
</table>

Method: GFlop/s, % of peak, SpeedUp

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese
How to optimize?

A trade-off between benefit and effort

FORTRAN based

- Relatively accessible (loop unrolling)
- Moderate optimisation can be achieved relatively fast
- Compilers fail to use vector engine efficiently

Push optimisation at the best

- About 20 different patterns have been studied for one 1D convolution
- Tedious work, huge code → Maintainability?

Automatic code generation?

Consider new programming paradigms

New coding approaches are most welcome
→ Kronos’ OpenCL standard

FORTRAN based

- Relatively accessible (loop unrolling)
- Compilers fail to use vector engine efficiently

Push optimisation at the best

- About 20 different patterns have been studied for one 1D convolution
- Tedious work, huge code → Maintainability?

Automatic code generation?

Consider new programming paradigms

New coding approaches are most welcome
→ Kronos’ OpenCL standard
GPU-ported operations in BigDFT (double precision)

Convolutions Kernels
- (OpenCL (re)written)
- Fully functional (all BC)
- Based on the former CUDA version
- ✔ A 10 to 60 speedup

GPU BigDFT sections
GPU speedups between 5 and 20, depending on:
- ✔ Wavefunction size
- ✔ CPU-GPU Architecture

Performances of CPU vs NVIDIA vs AMD

Kernels

GPU speedup (Double prec.) vs Wavefunction size (MB)

CPU-GPU Architecture

Future Scenarios
Present Situation
Optimization
User viewpoint
Frequent mistakes
Performance evaluation
S_GPU

Practical cases

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese
Interpretation of HPC behaviour:

Evaluate the code behaviour:
A not so easy task (especially nowadays)
Frequent mistakes:
- Parallel efficiency is not walltime
- Scalability is not only communication-driven
- Performance evaluation is a multicritierion evaluation process
 - Best scalability (Machine point of view)
 - Best acceleration efficiency (Vendor point of view)
 - Best walltime (User point of view)
But also robustness, fault tolerance, best Flop/W ratio

Anticipated messages
Far from trivial situation:
- No golden rule
- HPC Optimal Strategies should be interpreted
Amdahl’s law

A basic concept

The speedup with N cores depends on the parallel fraction (P) of the code:

$$\text{speedup} = \frac{1}{\frac{P}{N} + (1 - P)}$$

It represents the limits to the scalability of a given code.

An important definition

Parallel Efficiency $= \frac{\text{Time}(N_{\text{ref}})}{\text{Time}(N)} \cdot \frac{N}{N_{\text{ref}}}$

Often used as a benchmark of a code in a parallel environment.

Lots of factors involved

- Scalability of the problem
- Communication performances
- Computational cost of operations
Scalability does not depend only on communication

Amdahl’s law is a upper limit!
What are ideal conditions for acceleration (e.g. GPU)

To-be-accelerated routines should take the majority of the time

What happens to parallel efficiency?

Task repartition for a small system (ZnO, 128 atoms)
Parallelisation and architectures

Same code, same runs. Which is the best?

CCRT Titane (Nehalem, Infiniband) vs. CSCS Rosa (Opteron, Cray XT5)

Titane is 2.3 to 1.6 times faster than Rosa!

Degradation of parallel performances: why?

1. Calculation power has increased more than networking
2. Better libraries (MKL)
 - Walltime reduced, but lower parallel efficiency

This will always happen while using GPU!
Same runs, same sources; different user conditions

Differences up to a factor of 3!

A case-by-case study

Consideration are often system-dependent, a thumb rule not always exists.

-know your code!
A (even more) frequent mistake

Example: two DFT codes running on the same system.

Naive question: Which one is *faster*?

The running conditions

- Machine generation (CPU, cores, cache,

- Parallel environment (MPI procs, OMP threads, GPUs)
- Binaries (libraries, compiler,

- Network vs. Computation performance

The code conditions (DFT example)

- Basis set (formalism, cut-off,

- Self-Consistency (Input Guess, minimization scheme)

How this question should be posed?

- Which is lowest time-to-solution *possible* for this system on a given machine?
- Which is the fastest machine *for this system*?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim

Luigi Genovese
Data repartition on a node

Non-hybrid case
GPU not used → homogeneous repartition

MPI 0
DATA

MPI 1
DATA

MPI 2
DATA

MPI 3
DATA
Data repartition on a node

“Naive” repartition
All the cores use the GPU at the same time

MPI 0
DATA

MPI 1
DATA

MPI 2
DATA

MPI 3
DATA

GPU
HPC and Multi-GPU Architectures

Software problem
HPC nowadays
Memory bottleneck

Developer approach
Future Scenarios
Present Situation
Optimization

User viewpoint
Frequent mistakes
Performance evaluation
S_GPU

Performances
GPU
Practical cases

Conclusion

Data repartition on a node

Inhomogeneous repartition
Only one node use the GPU with more data

MPI 0
DATA

MPI 1
DATA

MPI 2
DATA

MPI 3
DATA

GPU

Data repartition on a node
The S_GPU approach

S_GPU library manages GPU resource within the node
De-synchronisation of operations

Two semaphores are activated for each card on the node:
- Data transfer (CPU \rightarrow GPU and GPU \rightarrow CPU)
- Calculation on the GPU

Each operation (e.g. convolution of a wavefunction) is associated to a stream.

Operation overlap

Calculation and data transfer of different stream may overlap
Operation are scheduled on a first come - first served basis

Several advantages

- The time for memory transfers is saved
- Heavy calculation can be passed to the card one - by - one, avoiding scheduling problems
Example of a time chart

The GPU can be viewed as a shared co-processor

CPU → GPU | Calculation | GPU → CPU

MPI 0
MPI 1
MPI 2
MPI 3

→ Time

HPC and Multi-GPU

Architectures
Software problem
HPC nowadays
Memory bottleneck

Developer approach
Future Scenarios
Present Situation
Optimization

User viewpoint
Frequent mistakes
Performance evaluation

S_GPU

Performances
CPU
Practical cases

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese
Convenience of S_GPU approach (end of 2009)

Different tests thanks to BigDFT flexibility
We have performed many tests, with different ratios GPU/CPU on the same node

Speedup on the full code (examples)
S_GPU is the best compromise speedup/easiness
Examples:

<table>
<thead>
<tr>
<th></th>
<th>CPU -GPU</th>
<th>8 - 1</th>
<th>8 - 2</th>
<th>4-2</th>
<th>2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_GPU</td>
<td>1.96</td>
<td>3.69</td>
<td>3.73</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>Inhomogeneous (best)</td>
<td>2.08</td>
<td>2.64</td>
<td>2.32</td>
<td>2.40</td>
<td></td>
</tr>
</tbody>
</table>

Full code tested on Multi-GPU platforms

- CINES - lblis
 48 GPU, Prototype calculations
- CCRT - Titane
 Up to 196 GPU (Grand challenge 2009)
Case study: BigDFT in hybrid codes

Acceleration of the full BigDFT code

- Considerable gain may be achieved for suitable systems
- Amdahl’s law should always be considered
- Resources can be used concurrently (OpenCL queues)
- More MPI processes may share the same card!
The time-to-solution problem I: Efficiency

Good example: 4 C at, surface BC, 113 Kpts

Parallel efficiency of 98%, convolutions largely dominate.

Node:
2 × Fermi + 8 × Westmere
8 MPI processes

<table>
<thead>
<tr>
<th># GPU added</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpeedUp (SU)</td>
<td>5.3</td>
<td>9.8</td>
<td>11.6</td>
</tr>
<tr>
<td># MPI equiv.</td>
<td>44</td>
<td>80</td>
<td>96</td>
</tr>
<tr>
<td>Acceler. Eff.</td>
<td>1</td>
<td>.94</td>
<td>.56</td>
</tr>
</tbody>
</table>

![Graph showing speedup vs. number of MPI processes](image)
The time-to-solution problem II: Robustness

Not so good example: A too small system

- CPU efficiency is poor (calculation is too fast)
- Amdahl’s law not favorable (5x SU at most)
- GPU SU is almost independent of the size
- The hybrid code *always* goes faster
A look in near future: science with HPC codes

A concerted set of actions
- Improve codes functionalities for present-day and next generation supercomputers
- Test and develop new formalisms
- Transform challenges in opportunities (needs work!)

The Mars mission
Is Petaflop performance possible?
- Multilevel parallelization \(\rightarrow\) one order of magnitude
- Bigger systems, heavier methods \(\rightarrow\) (more than) one order of magnitude bigger

Two challenges comes from HPC
- Conceive unprecedented things on new machines
- Preserve and maintain to-date functionalities on future machines
Architecture evolutions
- Manycore era (multilevel parallelisation)
- Memory traffic as the limiting factor

Software evolutions
- Superposition of parallelization layers
- Optimization issues: maintainability vs. robustness

Users ability
- Architecture dimensioning: adapt the runs to the system
- Performance evaluation approach

And it is not going better:
- New set of architectures (GPU, MIC, BG/Q,...)
- New development paradigms (MPI, OpenMP, OpenCL,...)
- HPC codes must follow (HPC projects, Users how-to,...)
General considerations

What is desirable? (Does it *open* new directions?)
Performance should lead to improvements

Optimisation effort

- Know the code behaviour and features
 Careful performance study of the complete algorithm
- Identify and *make modular* critical sections
 Fundamental for mainainability and architecture evolution
- Optimisation cost: consider *end-user* running conditions
 Robustness is more important than best performance

Performance evaluation know-how

- No general thumb-rule: what means High Performance?
 A multi-criterion evaluation process
- Multi-level parallelisation always to be used
 Your code will not (anymore) become faster via hardware