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Performance: an old problem 

“The most constant difficulty in contriving 
the engine has arisen from the desire to 
reduce the time in which the calculations 
were executed to the shortest which is 
possible.” 

Charles Babbage 
1791 – 1871    

Difference Engine 



July 09, 2014 Slide 5 

HPC hardware development 

Moore's law is still in charge, but 
  Clock rates no longer increase 
  Performance gains only through 

increased parallelism 

Optimizations of applications more  
difficult 

  Increasing application complexity 
  Multi-physics 
  Multi-scale 

  Increasing machine complexity 
  Hierarchical networks / memory 
  More CPUs / multi-core 

  Challenges for HPC applications! 
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Example: XNS 

CFD simulation of unsteady flows 
  Developed by CATS / RWTH Aachen 
  Exploits finite-element techniques, unstructured 3D meshes, 

iterative solution strategies 

MPI parallel version 
  >40,000 lines of Fortran & C 
  DeBakey blood-pump data set (3,714,611 elements) 

Hæmodynamic flow 
pressure distribution Partitioned finite-element mesh 
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XNS wait-state analysis on BG/L (2007) 

Computation 
Communication 
Waiting time 
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Tuning applications 

Successful engineering is a combination of 
  The right algorithms and libraries 
  Compiler flags and directives 
  Thinking !!! 

Measurement is better than guessing 
  To determine performance bottlenecks 
  To compare alternatives 
  To validate tuning decisions and optimizations 

 After each step! 
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Code development – “Golden rules” 

Nobody cares how fast you can compute  
a wrong answer! 

Programmer’s rule of code development: 

It's easier to optimize a slow correct program  
than to debug a fast incorrect one! 

Performance analyst’s deduction: 
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Code development stages 

1.  Programming 
  Tools: editors with syntax highlighting (e.g. vim, emacs,…), 

development tools (e.g. Parallel Tools Platform (PTP), syntax 
checker (e.g. forcheck) 

2.  Debugging 
  Tools: write/printf statements, classical debuggers (TotalView, 

DDT, GDB, …), MARMOT, MUST (for MPI codes), Intel® 
Inspector (for OpenMP codes) 

3.  Performance 
  Tools: performance analysis tools (Scalasca, Vampir, TAU, …) 
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Code development – Programming 
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Selected Features 
  Verification of  conformance to all levels of Fortran 

standard 
  Full static analysis of separate program units 
  Reverse engineering tool 
  Generates call trees, callby trees, use trees and module 

dependencies 
  Provides an IDE  

http://www.forcheck.nl 

Code development – FORCHECK 
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Code development – Syntax highlighting 

Syntax highlighting 
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What is PTP: 
  Integrated development environment (IDE) for parallel 

application development 
  Based on Eclipse 
  Open Source 
  Developers: 

  IBM, U.Oregon, UTK, Heidelberg University, NCSA, 
UIUC, JSC, ... 

http://www.eclipse.org/ 

Code development – PTP 
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Code development – Eclipse 
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Code development stages 

1.  Programming 
  Tools: editors with syntax highlighting (e.g. vim, emacs,…), 

development tools (e.g. Parallel Tools Platform (PTP), syntax 
checker (e.g. forcheck) 

2.  Debugging 
  Tools: write/printf statements, classical debuggers (TotalView, 

DDT, GDB, …), MARMOT, MUST (for MPI codes), Intel® 
Inspector (for OpenMP codes) 

3.  Performance 
  Tools: performance analysis tools (Scalasca, Vampir, TAU, …) 
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Code development – debugging  

Murphy‘s law: 

“If the code works the first time it simply means, that 
the bug is hidden more carefully” 
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MARMOT is freely available at  
http://www.hlrs.de/organization/av/amt/projects/marmot/ 
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Code development – Marmot 

Tool for analyzing and checking MPI applications 
  Checks usage of MPI calls during runtime 
  Supports C and Fortran  

Features 
  Reports violations of the MPI-standard 
  Reports unusual behavior or possible problems 
  Displayed when harmless but remarkable behavior occurs 
  MPI-calls are traced on each node throughout the whole application 
  When detecting a deadlock the last few calls (as configured by the 

user) can be traced back on each node 
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Code development – Marmot Usage  

Using marmot:  
  Compile your application with the corresponding marmot wrapper: 

marmotcc, marmotcxx, marmotf77, marmotf90 
  Set marmot options via environment variables 
  Run your application with n+1 MPI tasks 

Some environment variables: 

Variable Possible values 
MARMOT_DEBUG_MODE 0: errors 

1: errors and warnings 
2: errors, warnings and remarks 

MARMOT_LOGFILE_TYPE 0: ASCII 
1: HTML 
2: CUBE 
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Code development – Marmot  example  

Example code 
  4 ranks on a ring  
  Each rank sends a message to its right neighbor and 

receives a message from its left neighbor 
  Compiled with  

  marmotcc –o 7.1.x 7.1c 

Marmot example output (HTML) 
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Code development – Marmot  example 
 46   ...     
 47   left  = (myrank-1+nranks)%nranks; 
 48   right = (myrank+1)%nranks; 
 49 
 50   for (i=1;i<=nranks;i++) 
 51   { 
 52     summe = recvbuf + myrank; 
 53     MPI_Ssend(&summe, 1, MPI_INT, right, myrank,  
                  MPI_COMM_WORLD); 
 54     MPI_Recv(&recvbuf, 1, MPI_INT, left, left,  
                  MPI_COMM_WORLD, &status); 
 55     MPI_Wait(&request, &status); 
 56   } 
 57  ... 
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MUST is freely available (BSD license) at  
https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST 
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Code development – MUST 

Tool for analyzing and checking MPI applications 
  Checks usage of MPI calls during runtime 
  Supports C and Fortran  

MUST checks for the following classes of errors (among others) 
  Communicator usage 
  Datatype usage 
  Leak checks (MPI resources not freed before calling MPI Finalize) 
  Overlapping buffers passed to MPI 
  Deadlocks resulting from MPI calls 
  Basic checks for thread level usage (MPI_Init_thread) 
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Code development – MUST Usage  

Option Explanation 
none •  Very slow (< 32 processes) 

•  Detects errors even if application crashes 
•  Needs one extra process 

--must:nodesize Y •  Fast 
•  Detects errors even if application crashes 
•  Needs 1+[X/(Y-1)] extra processes 

--must:nocrash •  Fast 
•  Detects errors only if the application does not crash 
•  Needs one extra process 

 mustrun --envall -np X application.x 
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Code development – MUST example  

Example code 
  4 ranks on a ring  
  Each rank sends a message to its right neighbor and 

receives a message from its left neighbor 
  Compiled with  

  mpicc –o 7.1.x 7.1c 
  Started with 

  mustrun --envall -np 4 7.1.x 

MUST example output (HTML) 
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Thread Inspector is a commercial tool 
http://software.intel.com/en-us/intel-inspector-xe 
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Intel® Inspector Memory & Thread Analyzer  

  Memory error and thread checker tool 
  Supported languages on linux systems 

  C/C++, Fortran 
  Maps errors to the source code line and call stack 
  Detects problems that are not recognized by the 

compiler (e.g. race conditions, data dependencies) 

Never use an OpenMP parallelized code in production without 
checking for race conditions 

Alternatives: Threadspotter, Coverity Thread Analyzer, Sun Thread Analyzer, 
Helgrind 
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TotalView is a commercial debugger 
http://www.roguewave.com/products/totalview.aspx 
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Code development – TotalView debugger 

Very powerful tool for code debugging 

  Supports C, C++, Fortran  
  Available for many platforms 
  serial, MPI, OpenMP, hybrid MPI/OpenMP supported 
  Some features: 

 Memory debugging 
  Breakpoints, evaluations points, barriers, batch 

debugging 
  Replay engine 
  2D Array view, call graphs, value manipulations 
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Code development – TotalView debugger 

Compile your code with debug flags 

mpif90 -o prog.x -debug program.f90  # Fortran, Intel compiler 
mpicc  -o prog.x -debug program.c  # C, Intel compiler 
mpicxx -o prog.x -debug program.cc  # C++, Intel compiler 

  -g -O0 also possible (as with most compilers) 

TotalView execution modes 
1.  GUI 
2.  Script (tvscript) 
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Code development – TotalView 

Choose your executable 

Switch on memory 
debugging if needed 

Choose program 
arguments if needed 
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Code development – TotalView 

Choose MPI settings 

Choose MPI 
version 

Choose number of 
MPI tasks 

Choose number of 
compute nodes 
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Code development – TotalView 

Source code 
window 

Action points 

Process and 
thread view 

Navigation 
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Performance factors of applications 

“Sequential” factors 
  Computation 

 Choose right algorithm, use compiler to optimize 
  Cache and memory 

 Tough, only limited tool support 
  Input / output 

 Often not given enough attention 
“Parallel” factors 

  Partitioning / decomposition 
  Communication (i.e., message passing) 
  Multithreading 
  Synchronization / locking 

 Good tool support 
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Parallelism: Efficiency and Scalability 

Efficiency:  

Scalability: 
  Strong scaling (problem size constant, increase n) 
  Weak scaling (problem-size increase proportional to n)  

E(n): Efficiency on n cores/CPUS 
t(1) : time on 1 core/CPU 
t(n) : time on n cores/CPUs 

Speed-up:  

S(n): Speed-up on n cores/CPUS 
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Parallelism: Ideal Scalability 
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Amdahl’s Law 

Limit of scalability: 

Sr: Real speed-up 
α : serial part (cannot be parallelized) 
n : number of cores 

Example: 
  α = 0.1 
  n = 8 

   

 Sr = 4.7 
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Performance engineering workflow 

  Prepare application (with symbols), 
insert extra code (probes/hooks) 

  Collection of data relevant to 
execution performance analysis 

  Calculation of metrics, identification 
of performance metrics 

  Presentation of results in an intuitive/
understandable form 

  Modifications intended to eliminate/
reduce performance problems 

Preparation 

Measurement 

Analysis 

Examination 

Optimization 
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The 80/20 rule 

Programs typically spend 80% of their time in 20% of 
the code 

Programmers typically spend 20% of their effort to get 
80% of the total speedup possible for the application 
 Know when to stop! 

Don't optimize what does not matter 
 Make the common case fast! 

“If you optimize everything, 
you will always be unhappy.” 

Donald E. Knuth 
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Metrics of performance 

What can be measured? 
  A count of how often an event occurs 

  E.g., the number of MPI point-to-point messages sent 
  The duration of some interval 

  E.g., the time spent in these send calls 
  The size of some parameter 

  E.g., the number of bytes transmitted by these calls 

Derived metrics 
  E.g., rates / throughput 
  Needed for normalization 
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Example metrics 

Following example metrics can be measured 
  Execution time 
  Number of function calls 
  CPI 

  CPU cycles per instruction 
  FLOPS 

  Floating-point operations executed per second 
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Execution time 

Wall-clock time 
  Includes waiting time: I/O, memory, other system activities 
  In time-sharing environments also the time consumed by other 

applications 

CPU time 
  Time spent by the CPU to execute the application 
  Does not include time the program was context-switched out 

  Problem: Does not include inherent waiting time (e.g., I/O) 
  Problem: Portability? What is user, what is system time? 

Problem: Execution time is non-deterministic 
  Use mean or minimum of several runs 
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Inclusive 
  Information of all sub-elements aggregated into single value 

Exclusive 
  Information cannot be subdivided further 

Inclusive 

Inclusive vs. exclusive values 

Exclusive 

int foo()  
{ 
  int a; 
  a = 1 + 1; 

  bar(); 

  a = a + 1; 
  return a; 
} 
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Classification of measurement techniques 

How are performance measurements triggered? 
  Sampling 
  Code instrumentation 

How is performance data recorded? 
  Profiling / Runtime summarization 
  Tracing 

How is performance data analyzed? 
  Online 
  Post mortem 
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Sampling 

Running program is periodically interrupted  
to take measurement 
  Timer interrupt, OS signal, or HWC overflow 
  Service routine examines return-address stack 
  Addresses are mapped to routines using 

symbol table information 

Statistical inference of program behavior 
  Not very detailed information on highly 

volatile metrics 
  Requires long-running applications 

Works with unmodified executables 

Time 
main foo(0) foo(1) foo(2) 

int main() 
{ 
  int i; 

  for (i=0; i < 3; i++) 
    foo(i); 

  return 0; 
} 

void foo(int i) 
{ 

  if (i > 0) 
    foo(i – 1); 

} 

Measurement 

t9 t7 t6 t5 t4 t1 t2 t3 t8 
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Instrumentation 

Time 

Measurement 

Measurement code is inserted such that 
every event of interest is captured directly 
  Can be done in various ways 

Advantage: 
  Much more detailed information 

Disadvantage: 
  Processing of source-code / executable 

necessary 
  Large relative overheads for small functions 

int main() 
{ 
  int i; 

  for (i=0; i < 3; i++) 
    foo(i); 

  return 0; 
} 

void foo(int i) 
{ 

  if (i > 0) 
    foo(i – 1); 

} 

Time 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

main foo(0) foo(1) foo(2) 

Enter(“main”); 

Leave(“main”); 

Enter(“foo”); 

Leave(“foo”); 
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Instrumentation techniques 

Static instrumentation 
  Program is instrumented prior to execution 

Dynamic instrumentation 
  Program is instrumented at runtime 

Code is inserted 
  Manually 
  Automatically 

  By a preprocessor / source-to-source translation tool 
  By a compiler 
  By linking against a pre-instrumented library / runtime system 
  By binary-rewrite / dynamic instrumentation tool 
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Critical issues 

Accuracy 
  Intrusion overhead 

  Measurement itself needs time and thus lowers performance 
  Perturbation 

  Measurement alters program behaviour 
  E.g., memory access pattern 

  Accuracy of timers & counters 

Granularity 
  How many measurements? 
  How much information / processing during each measurement? 

 Tradeoff: Accuracy vs. Expressiveness of data 
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Classification of measurement techniques 

How are performance measurements triggered? 
  Sampling 
  Code instrumentation 

How is performance data recorded? 
  Profiling / Runtime summarization 
  Tracing 

How is performance data analyzed? 
  Online 
  Post mortem 
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Profiling / Runtime summarization 

Recording of aggregated information 
  Total, maximum, minimum, … 

For measurements 
  Time 
  Counts 

  Function calls 
  Bytes transferred 
  Hardware counters 

Over program and system entities 
  Functions, call sites, basic blocks, loops, … 
  Processes, threads 

 Profile = summarization of events over execution interval 
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Types of profiles 

Flat profile 
  Shows distribution of metrics per routine / instrumented region 
  Calling context is not taken into account 

Call-path profile 
  Shows distribution of metrics per executed call path 
  Sometimes only distinguished by partial calling context 

(e.g., two levels) 

Special-purpose profiles 
  Focus on specific aspects, e.g., MPI calls or OpenMP constructs 
  Comparing processes/threads 
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Tracing 

Recording information about significant points (events) during 
execution of the program 
  Enter / leave of a region (function, loop, …) 
  Send / receive a message, … 

Save information in event record 
  Timestamp, location, event type 
  Plus event-specific information (e.g., communicator, 

sender / receiver, …) 

Abstract execution model on level of defined events 

 Event trace = Chronologically ordered sequence of 
           event records 
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Event tracing 

void foo() { 

  ... 

  send(B, tag, buf); 
  ... 

} 

Process A 

void bar()  { 

  ... 
  recv(A, tag, buf); 

  ... 

} 

Process B 

MONITOR 

MONITOR 

sy
nc

hr
on

iz
e(

d)
 

void bar() { 
  trc_enter("bar"); 
  ... 
  recv(A, tag, buf); 
  trc_recv(A); 
  ... 
  trc_exit("bar"); 
} 

void foo() { 
  trc_enter("foo"); 
  ... 
  trc_send(B); 
  send(B, tag, buf); 
  ... 
  trc_exit("foo"); 
} 

instrument 

Global trace view  

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

merge 

unify 

1 foo 

2 bar 

... 

58 ENTER 1 

62 SEND B 

64 EXIT 1 

... 

... 

Local trace A 

Local trace B 

foo 1 

... 

bar 1 

... 

60 ENTER 1 

68 RECV A 

69 EXIT 1 

... 

... 
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Tracing vs. Profiling 

Tracing advantages 
  Event traces preserve the temporal and spatial relationships among 

individual events ( context) 
  Allows reconstruction of dynamic application behavior on any 

required level of abstraction 
  Most general measurement technique 

  Profile data can be reconstructed from event traces 

Disadvantages 
  Traces can very quickly become extremely large 
  Writing events to file at runtime causes perturbation 
  Writing tracing software is complicated 

  Event buffering, clock synchronization, ... 
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Classification of measurement techniques 

How are performance measurements triggered? 
  Sampling 
  Code instrumentation 

How is performance data recorded? 
  Profiling / Runtime summarization 
  Tracing 

How is performance data analyzed? 
  Online 
  Post mortem 
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Online analysis 

Performance data is processed during measurement run 
  Process-local profile aggregation 
  More sophisticated inter-process analysis using 

  “Piggyback” messages 
  Hierarchical network of analysis agents 

Inter-process analysis often involves application steering to 
interrupt and re-configure the measurement 
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Post-mortem analysis 

Performance data is stored at end of measurement run 

Data analysis is performed afterwards 
  Automatic search for bottlenecks 
  Visual trace analysis 
  Calculation of statistics 
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Example: Time-line visualization 

1 foo 

2 bar 

3 ... 

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

main 
foo 
bar 

58 60 62 64 66 68 70 

B 

A 
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No single solution is sufficient! 

 A combination of different methods, tools and techniques is 
typically needed! 
  Analysis 

Statistics, visualization, automatic analysis, data mining, ... 

  Measurement 
Sampling / instrumentation, profiling / tracing, ... 

  Instrumentation 
Source code / binary, manual / automatic, ... 
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Typical performance analysis procedure 

Do I have a performance problem at all? 
  Time / speedup / scalability measurements 

What is the key bottleneck (computation / communication)? 
  MPI / OpenMP / flat profiling 

Where is the key bottleneck? 
  Call-path profiling, detailed basic block profiling 

Why is it there? 
  Hardware counter analysis, trace selected parts to keep trace size 

manageable 

Does the code have scalability problems? 
  Load imbalance analysis, compare profiles at various sizes function-by-

function 
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Outline 
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  Performance analysis and tuning 
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  Summary 
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Computational imbalance 

Absolute difference to average exclusive execution time 
  Focusses only on computational parts 

Captures global imbalances 
  Based on entire measurement 
  Does not compare individual instances of function calls 
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Overload 

Processes/threads with exclusive execution time above average 
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Overload, single participant 

Call-paths executed by single process/thread 



July 09, 2014 Slide 69 

Underload 

Processes/threads with exclusive execution time below average 
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Underload, non-participation 

Call-paths not executed by a subset of processes/threads 
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Late sender 

  Waiting time caused by a blocking receive operation posted earlier 
than the corresponding send operation 

  Applies to blocking as well as non-blocking communication 

time 

location 

MPI_Recv MPI_Irecv 

MPI_Send 

MPI_Wait 

MPI_Send 

time 

location 

MPI_Recv MPI_Irecv 

MPI_Isend 

MPI_Wait 

MPI_Isend MPI_Wait MPI_Wait 
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Late receiver 

  Waiting time caused by a blocking send operation posted earlier than 
the corresponding receive operation 

  Calculated by receiver but waiting time attributed to sender 
  Does currently not apply to non-blocking sends 

time 

location 

MPI_Recv MPI_Irecv 

MPI_Send 

MPI_Wait 

MPI_Send 
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Late post 

  MPI_Win_start (top) or MPI_Win_complete (bottom) 
wait until exposure epoch is opened by MPI_Win_post 

  Which of the two calls blocks is implementation dependent 

time 

location 

Win_post 

Win_start Put 

Win_start 

Win_complete 

Win_wait 

Put Win_complete 
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Early transfer 

  Time spent waiting in RMA operation on origin(s) started before 
exposure epoch was opened on target 

time 

location 

Win_post 

Win_complete Win_start Put 

Win_wait 



July 09, 2014 Slide 76 

Outline 
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OpenMP management time 

  Time spent on master thread for creating/destroying OpenMP 
thread teams 

time 

location 

parallel region body 

parallel region body 

parallel region body serial serial 
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OpenMP idle threads 

  Time spent idle on CPUs reserved for worker threads 

time 

location 

parallel region body 

parallel region body 

parallel region body serial serial 
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OpenMP waiting at barrier 

  Time spent waiting in front of a barrier call until the last process 
reaches the barrier operation 

  Applies to: Implicit/explicit barriers 

time 

location 

OpenMP barrier 

OpenMP barrier 

OpenMP barrier 

OpenMP barrier 
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Outline 
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Fragmentation of tools landscape 

Several performance tools co-exist 
  Separate measurement systems and output formats 
  Complementary features and overlapping functionality 
  Redundant effort for development and maintenance 
  Limited or expensive interoperability 
  Complications for user experience, support, training 

Vampir 

VampirTrace 
OTF 

Scalasca 

EPILOG / 
CUBE 

TAU 

TAU native 
formats 

Periscope 

Online 
measurement 



July 09, 2014 Slide 82 

SILC Project Idea 

Start a community effort for a common infrastructure 
  Score-P instrumentation and measurement system 
  Common data formats OTF2 and CUBE4 

Developer perspective: 
  Save manpower by sharing development resources 
  Invest in new analysis functionality and scalability 
  Save efforts for maintenance, testing, porting, support, training 

User perspective: 
  Single learning curve 
  Single installation, fewer version updates 
  Interoperability and data exchange 

SILC project funded by BMBF 
Close collaboration PRIMA project  

funded by DOE 
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Partners 

Forschungszentrum Jülich, Germany  
German Research School for Simulation Sciences, Aachen, 

Germany 
Gesellschaft für numerische Simulation mbH Braunschweig, 

Germany 
RWTH Aachen, Germany 
Technische Universität Dresden, Germany 
Technische Universität München, Germany  
University of Oregon, Eugene, USA 
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Score-P Functionality 

Provide typical functionality for HPC performance tools 
Support all fundamental concepts of partner’s tools 

Instrumentation (various methods) 
Flexible measurement without re-compilation: 

  Basic and advanced profile generation 
  Event trace recording 
  Online access to profiling data 

MPI, OpenMP, and hybrid parallelism (and serial) 
Enhanced functionality (OpenMP 3.0, CUDA, 

highly scalable I/O) 
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Design Goals 

Functional requirements 
  Generation of call-path profiles and event traces 
  Using direct instrumentation, later also sampling 
  Recording time, visits, communication data, hardware counters 
  Access and reconfiguration also at runtime 
  Support for MPI, OpenMP, basic CUDA, and all combinations 

  Later also OpenCL/HMPP/PTHREAD/… 

Non-functional requirements 
  Portability: all major HPC platforms 
  Scalability: petascale  
  Low measurement overhead 
  Easy and uniform installation through UNITE framework 
  Robustness 
  Open Source: New BSD License 
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Score-P Architecture  

Instrumentation wrapper 

Application (MPI×OpenMP×CUDA) 

Vampir Scalasca Periscope TAU 

Compiler 

Compiler 

OPARI 2 

POMP2 

CUDA 

CUDA 

User 

User 

PDT 

TAU 

Score-P measurement infrastructure 

Event traces (OTF2) Call-path profiles  
(CUBE4, TAU) 

Online interface 

Hardware counter (PAPI, rusage) 

PMPI 

MPI 
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Code instrumentation with Score-P 

Automatic instrumentation 
  Prefix compiler and linker command e.g. in your Makefile 

Manual instrumentation 
  Add instructions to your code manually 
  Available for Fortran (requires C preprocessor), C, and C++ 
  Can be used to 

  Add measurements 
  Disable (automatically instrumented) measurements 

 mpicc …   scorep mpicc … 
 mpif90 …   scorep mpif90 … 
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Score-P User Instrumentation API (Fortran) 

Requires processing by the C preprocessor 

#include "scorep/SCOREP_User.inc" 

subroutine foo(…) 
  ! Declarations 
  SCOREP_USER_REGION_DEFINE( solve ) 

  ! Some code… 
  SCOREP_USER_REGION_BEGIN( solve, “<solver>", \ 
                            SCOREP_USER_REGION_TYPE_LOOP ) 
  do i=1,100 
    [...] 
  end do 
  SCOREP_USER_REGION_END( solve ) 
  ! Some more code… 
end subroutine 
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Score-P User Instrumentation API (C/C++) 

#include "scorep/SCOREP_User.h" 

void foo() 
{ 
  /* Declarations */ 
  SCOREP_USER_REGION_DEFINE( solve ) 

  /* Some code… */ 
  SCOREP_USER_REGION_BEGIN( solve, “<solver>", \ 
                            SCOREP_USER_REGION_TYPE_LOOP ) 
  for (i = 0; i < 100; i++) 
  { 
    [...] 
  } 
  SCOREP_USER_REGION_END( solve ) 
  /* Some more code… */ 
} 
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Score-P Measurement Control API 

Can be used to temporarily disable measurement for certain intervals 
  Annotation macros ignored by default 
  Enabled with [--user] flag 

#include “scorep/SCOREP_User.inc” 

subroutine foo(…) 
  ! Some code… 
  SCOREP_RECORDING_OFF() 
  ! Loop will not be measured  
  do i=1,100 
    [...] 
  end do 
  SCOREP_RECORDING_ON() 
  ! Some more code… 
end subroutine 

#include “scorep/SCOREP_User.h” 

void foo(…) { 
  /* Some code… */ 
  SCOREP_RECORDING_OFF() 
  /* Loop will not be measured */ 
  for (i = 0; i < 100; i++) { 
    [...] 
  } 
  SCOREP_RECORDING_ON() 
  /* Some more code… */ 
} 

Fortran (requires C preprocessor) C / C++ 
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Measurement configuration: scorep-info 

Score-P measurements are configured via environment 
variables: % scorep-info config-vars --full 
SCOREP_ENABLE_PROFILING 
  Description: Enable profiling 

  [...] 
SCOREP_ENABLE_TRACING 
  Description: Enable tracing 

  [...] 
SCOREP_TOTAL_MEMORY 
  Description: Total memory in bytes for the measurement system 

  [...] 
SCOREP_EXPERIMENT_DIRECTORY 
  Description: Name of the experiment directory 

  [...] 
SCOREP_FILTERING_FILE 
  Description: A file name which contain the filter rules 

  [...] 
SCOREP_METRIC_PAPI 
  Description: PAPI metric names to measure 

  [...] 
SCOREP_METRIC_RUSAGE 
  Description: Resource usage metric names to measure 

  [... More configuration variables ...] 
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Example summary analysis result scoring 

Report scoring as textual output 

Region/callpath classification 
  MPI (pure MPI library functions) 
  OMP (pure OpenMP functions/regions) 
  USR (user-level source local computation) 
  COM (“combined” USR + OpenMP/MPI) 
  ANY/ALL (aggregate of all region types) 

% scorep-score scorep_example_sum/profile.cubex 
Estimated aggregate size of event trace (total_tbc):       35955109198 bytes 
Estimated requirements for largest trace buffer (max_tbc):  9043348074 bytes 
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes 
 or reduce requirements using file listing names of USR regions to be filtered.) 

flt type         max_tbc         time      % region 
     ALL      9043348074       933.55  100.0 ALL 
     USR      9025830154       450.52   48.3 USR 
     OMP        16431872       480.67   51.5 OMP 
     COM          997150         0.67    0.1 COM 
     MPI           88898         1.69    0.2 MPI 

USR 

USR 

COM 

COM USR 

OMP MPI 

33.5 GB total memory  
8.4 GB per rank! 
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Example summary analysis report 
breakdown 

Score report breakdown by region 

% scorep-score -r scorep_example_sum/profile.cubex 
  [...] 
flt type         max_tbc         time      % region 
     ALL      9043348074       933.55  100.0 ALL 
     USR      9025830154       450.52   48.3 USR 
     OMP        16431872       480.67   51.5 OMP 
     COM          997150         0.67    0.1 COM 
     MPI           88898         1.69    0.2 MPI 

     USR      2894950740       137.99   14.8 matmul_sub_ 
     USR      2894950740       119.71   12.8 matvec_sub_ 
     USR      2894950740       175.59   18.8 binvcrhs_ 
     USR       127716204         6.08    0.7 binvrhs_ 
     USR       127716204         7.38    0.8 lhsinit_ 
     USR        94933520         3.76    0.4 exact_solution_ 
     OMP          771840         0.05    0.0 !$omp parallel @exch_... 
     OMP          771840         0.04    0.0 !$omp parallel @exch_... 
     OMP          771840         0.05    0.0 !$omp parallel @exch_... 
 [...] 

USR 

USR 

COM 

COM USR 

OMP MPI 

More than 
8 GB just for 

these 6 regions 
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Analysis results 

Summary measurement analysis score reveals 
  Total size of event trace would be ~34 GB 
  Maximum trace buffer size would be ~8.5 GB per rank 

  smaller buffer would require flushes to disk during measurement 
resulting in substantial perturbation 

  99.8% of the trace requirements are for USR regions 
  purely computational routines never found on COM call-paths 

common to communication routines or OpenMP parallel regions 
  These USR regions contribute around 32% of total time 

  however, much of that is very likely to be measurement overhead 
for frequently-executed small routines 

Advisable to tune measurement configuration 
  Specify an adequate trace buffer size 
  Specify a filter file listing (USR) regions not to be measured 
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Example Summary Analysis Report Filtering 

Report scoring with prospective filter listing 6 USR regions 

% cat ../config/scorep.filt 
SCOREP_REGION_NAMES_BEGIN EXCLUDE 
binvcrhs* 
matmul_sub* 
matvec_sub* 
exact_solution* 
binvrhs* 
lhs*init* 
timer_* 

% scorep-score -f ../config/scorep.filt scorep_example_sum/profile.cubex 
Estimated aggregate size of event trace (total_tbc):       70086838 bytes 
Estimated requirements for largest trace buffer (max_tbc): 17521726 bytes 
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes 
 or reduce requirements using file listing names of USR regions to be filtered.) 

67 MB of memory in total, 
17 MB per rank! 
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New summary analysis result scoring 

Scoring of new analysis report as textual output 

Significant reduction in runtime (measurement overhead) 
  Not only reduced time for USR regions, but MPI/OMP reduced too! 

Further measurement tuning (filtering) may be appropriate 
  e.g., use “timer_*” to filter timer_start_, timer_read_, etc. 

% scorep-score scorep_example_sum_with_filter/profile.cubex 
Estimated aggregate size of event trace (total_tbc):       70086838 bytes 
Estimated requirements for largest trace buffer (max_tbc): 17521726 bytes 
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes 
 or reduce requirements using file listing names of USR regions to be filtered.) 

flt type         max_tbc         time      % region 
     ALL        17521726       215.07  100.0 ALL 
     OMP        16431872       212.86   99.0 OMP 
     COM          997150         0.68    0.3 COM 
     MPI           88898         1.54    0.7 MPI 
     USR            3806         0.00    0.0 USR 
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Scalasca is available at http://www.scalasca.org/, 
get support via scalasca@fz-juelich.de 
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The Scalasca project: Overview 

Project started in 2006 
  Initial funding by Helmholtz Initiative & Networking Fund 
  Many follow-up projects 

Follow-up to pioneering KOJAK project (started 1998) 
  Automatic pattern-based trace analysis 

Now joint development of 
  Jülich Supercomputing Centre 

  German Research School for Simulation Sciences 



July 09, 2014 Slide 100 

Scalasca 2.0 features 

Open source, New BSD license 
Fairly portable 

  IBM Blue Gene, IBM SP & blade clusters, Cray XT, SGI Altix, 
Solaris & Linux clusters, ... 

Uses Score-P instrumenter & measurement libraries 
  Scalasca 2.0 core package focuses on trace-based analyses 
  Supports common data formats 

  Reads event traces in OTF2 format 
  Writes analysis reports in CUBE4 format 

Current limitations: 
  No support for nested OpenMP parallelism and tasking 
  Unable to handle OTF2 traces containing CUDA events 
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Scalasca trace analysis 

Scalasca workflow 

Instr. 
target 
application  

Measurement 
library 

HWC 
Parallel wait-
state search 

Wait-state 
report 

Local event 
traces 

Summary 
report 

Optimized measurement configuration 

Instrumenter 
compiler / 

linker 

Instrumented 
executable 

Source 
modules 

R
ep

or
t  

m
an

ip
ul

at
io

n 

Which problem? Where in the 
program? 

Which 
process? 
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Scalasca command 

One command for (almost) everything… 

  The ‘scalasca -instrument’ command is deprecated and only provided 
for backwards compatibility with Scalasca 1.x. 

  Recommended: use Score-P instrumenter directly 

% scalasca 
Scalasca 2.0 
Toolset for scalable performance analysis of large-scale applications 
usage: scalasca [-v][-n][c] {action} 
    1. prepare application objects and executable for measurement: 
       scalasca –instrument <compile-or-link-command> # skin (using scorep) 
    2. run application under control of measurement system: 
       scalasca –analyze <application-launch-command> # scan 
    3. interactively explore measurement analysis report: 
       scalasca –examine <experiment-archive|report>  # square 

   -v, --verbose      enable verbose commentary 
   -n, --dry-run      show actions without taking them 
   -c, --show-config  show configuration and exit 
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Scalasca compatibility command: skin 

Scalasca application instrumenter 

  Provides compatibility with Scalasca 1.x 
  Recommended: use Score-P instrumenter directly 

% skin 
Scalasca 2.0: application instrumenter using scorep 
usage: skin [-v] [–comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>  
   -comp={all|none|...}: routines to be instrumented by compiler 
          (... custom instrumentation specification for compiler) 
   -pdt:  process source files with PDT instrumenter 
   -pomp: process source files for POMP directives 
   -user: enable EPIK user instrumentation API macros in source code 
   -v:    enable verbose commentary when instrumenting 

   --*:   options to pass to Score-P instrumenter 
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Scalasca convenience command: scan 

Scalasca measurement collection & analysis nexus 

% scan 
Scalasca 2.0: measurement collection & analysis nexus 
usage: scan {options} [launchcmd [launchargs]] target [targetargs] 
      where {options} may include: 
  -h    Help: show this brief usage message and exit. 
  -v    Verbose: increase verbosity. 
  -n    Preview: show command(s) to be launched but don't execute. 
  -q    Quiescent: execution with neither summarization nor tracing. 
  -s    Summary: enable runtime summarization. [Default] 
  -t    Tracing: enable trace collection and analysis. 
  -a    Analyze: skip measurement to (re-)analyze an existing trace. 
  -e exptdir   : Experiment archive to generate and/or analyze. 
                 (overrides default experiment archive title) 
  -f filtfile  : File specifying measurement filter. 
  -l lockfile  : File that blocks start of measurement. 
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Automatic measurement configuration 

scan configures Score-P measurement by setting some 
environment variables automatically 
  e.g., experiment title, profiling/tracing mode, filter file, … 
  Precedence order: 

  Command-line arguments 
  Environment variables already set 
  Automatically determined values 

Also, scan includes consistency checks and prevents 
corrupting existing experiment directories 

For tracing experiments, after trace collection completes then 
automatic parallel trace analysis is initiated 
  uses identical launch configuration to that used for measurement 

(i.e., the same allocated compute resources) 
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BT-MZ summary measurement 
Run the application using the Scalasca measurement collection & analysis 

nexus prefixed to launch command 

Creates experiment directory ./scorep_bt-mz_W_4x4_sum 

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum 
% OMP_NUM_THREADS=4 scan mpiexec –np 4 ./bt-mz_W.4 
S=C=A=N: Scalasca 2.0 runtime summarization 
S=C=A=N: ./scorep_bt-mz_W_4x4_sum experiment archive 
S=C=A=N: Thu Sep 13 18:05:17 2012: Collect start 
mpiexec –np 4 ./bt-mz_W.4 

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark 

 Number of zones:   8 x   8 
 Iterations: 200    dt:   0.000300 
 Number of active processes:     4 

  [... More application output ...] 

S=C=A=N: Thu Sep 13 18:05:39 2012: Collect done (status=0) 22s 
S=C=A=N: ./scorep_bt-mz_W_4x4_sum complete. 
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BT-MZ summary analysis report examination 

Score summary analysis report 

Post-processing and interactive exploration with CUBE 
   

The post-processing derives additional metrics and generates 
a structured metric hierarchy 

% square  scorep_bt-mz_W_4x4_sum 
INFO: Displaying ./scorep_bt-mz_W_4x4_sum/summary.cubex... 

                 [GUI showing summary analysis report] 

% square -s  scorep_bt-mz_W_4x4_sum 
INFO: Post-processing runtime summarization result... 
INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score 
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CUBE is available at http://www.scalasca.org/, 
get support via scalasca@fz-juelich.de 
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CUBE 

Parallel program analysis report exploration tools 
  Libraries for XML report reading & writing 
  Algebra utilities for report processing 
  GUI for interactive analysis exploration 

  requires Qt4 
Originally developed as part of Scalasca toolset 
Now available as a separate component 

  Can be installed independently of Score-P, e.g., 
on laptop or desktop 

  Latest release: CUBE 4.2.3 (June 2014) 
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Analysis presentation and exploration 

Representation of values (severity matrix) 
on three hierarchical axes 
  Performance property (metric) 
  Call path (program location) 
  System location (process/thread) 

Three coupled tree browsers 

CUBE displays severities 
  As value: for precise comparison 
  As colour: for easy identification of hotspots 
  Inclusive value when closed & exclusive value when expanded 
  Customizable via display modes 

Call 
path 

P
ro

pe
rty

 

Location 
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Analysis presentation 

How is it 
distributed across 

the processes/threads? 

What kind of 
performance 

metric? 

Where is it in the 
source code? 

In what context? 
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Analysis report exploration (opening view) 
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Metric selection 

Selecting the “Time” metric 
shows total execution time 
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Expanding the system tree 

Distribution of 
selected metric 
for call path by 
process/thread 
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Selecting a call path 

Selection updates 
metric values shown 
in columns to right 



July 09, 2014 Slide 117 

Source-code view via context menu 

Right-click opens 
context menu 
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Source-code view 
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Flat profile view 

Select flat view tab, 
expand all nodes, 
and sort by value 
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Box plot view 

Box plot shows distribution 
across the system; with min/

max/avg/median/quartiles 
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Alternative display modes 

Data can be 
shown in various 

percentage modes 
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Important display modes 

Absolute 
  Absolute value shown in seconds/bytes/counts 

Selection percent 
  Value shown as percentage w.r.t. the selected node 

“on the left“ (metric/call path) 

Peer percent (system tree only) 
  Value shown as percentage relative to the maximum 

peer value 
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Multiple selection 

Select multiple 
nodes with 
Ctrl-click 
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Context-sensitive help 

Context-sensitive 
help available for 

all GUI items 



July 09, 2014 Slide 125 

CUBE algebra utilities 

Calculating difference of two reports 

Additional utilities for merging, calculating mean, etc. 
  Default output of cube_utility is a new report utility.cubex 

Further utilities for report scoring & statistics 

Run utility with “-h” (or no arguments) for brief usage info 

% cube_diff  scorep_bt-mz_W_4x4_sum/profile.cubex  cut.cubex 
Writing diff.cubex... done. 
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Cube - Demo 



July 09, 2014 Slide 127 

Analyzing a performance issue with Scalasca/
CUBE  
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Post-processed trace analysis report 

Additional trace-based 
metrics in metric hierarchy 
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Online metric description 

Access online metric 
description via context 

menu 
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Online metric description 
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Pattern instance statistics 

Access pattern instance 
statistics via context menu 

Click to get 
statistics details 
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Connect to Vampir trace browser 

To investigate most severe 
pattern instances, connect 

to a trace browser… …and select trace file from 
the experiment directory 
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Show most severe pattern instances 

Select “Max severity in trace 
browser” from context menu 
of call paths marked with a 

red frame 
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Investigate most severe instance in Vampir 

Vampir will automatically 
zoom to the worst 

instance in multiple steps 
(i.e., undo zoom provides 

more context) 
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Vampir is available at http://www.vampir.eu, 
get support via vampirsupport@zih.tu-dresden.de 
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Objectives 

Visualization of dynamics of complex parallel processes 
Requires two components 

  Monitor/Collector (Score-P) 
  Charts/Browser (Vampir) 

Typical questions that Vampir helps to answer: 
  What happens in my application execution during a given time in a 

given process or thread? 
  How do the communication patterns of my application execute on a 

real system? 
  Are there any imbalances in computation, I/O or memory usage and 

how do they affect the parallel execution of my application? 
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Event trace visualization with Vampir 

Alternative and supplement to automatic analysis 
  Show dynamic run-time behavior graphically at any level of detail 
  Provide statistics and performance metrics 

Timeline charts 
  Show application activities and  

communication along a time axis 

Summary charts 
  Provide quantitative results for 

the currently selected time 
interval 
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Vampir – Visualization Modes (1) 

Directly on front end or local machine 

% vampir 

Score-P Trace 
File 

(OTF2) 

Vampir 8 CPU CPU 

CPU CPU CPU CPU 

CPU CPU 

Multi-Core 
Program 

Thread parallel Small/Medium sized trace 
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Vampir – Visualization Modes (2) 

On local machine with remote VampirServer  

Score-P 

Vampir 8 

Trace 
File 

(OTF2) 

VampirServer 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

CPU CPU CPU CPU 

Many-Core 
Program 

Large Trace File 
(stays on remote machine) 

MPI parallel application 

LAN/WAN 

% vampirserver start –n 12 % vampir 
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Usage order of the Vampir Performance Analysis 
Toolset 

1.  Instrument your application with Score-P 
2.  Run your application with an appropriate test set 
3.  Analyze your trace file with Vampir 

  Small trace files can be analyzed on your local workstation 
1.  Start your local Vampir  
2.  Load trace file from your local disk 

  Large trace files should be stored on the HPC file system 
1.  Start VampirServer on your HPC system 
2.  Start your local Vampir 
3.  Connect local Vampir with the VampirServer on the HPC system 
4.  Load trace file from the HPC file system 
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The main displays of Vampir 

Timeline Charts: 
           Master Timeline  

           Process Timeline 

           Counter Data Timeline 

           Performance Radar 

Summary Charts: 

           Function Summary 

           Message Summary 

           Process Summary 

           Communication Matrix View 
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Vampir: example visualization 

% vampir scorep_bt-mz_B_4x4_trace  

Master Timeline  

Navigation Toolbar  

Function Summary  

Function Legend  
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Vampir: example visualization 

Master Timeline 

Detailed information about 
functions, communication 

and synchronization events 
for collection of processes. 
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Vampir: example visualization 

Detailed information about 
different levels of function 
calls in a stacked bar chart 
for an individual process. 

Process Timeline 
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Vampir: example visualization 

Typical program phases 

Initialisation Phase Computation Phase 
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Vampir: example visualization 

Detailed counter 
information over time for 

an individual process. 

Counter Data Timeline 



July 09, 2014 Slide 148 

Vampir: example visualization 

Performance Radar 

Detailed counter 
information over time for  
a collection of processes. 
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Vampir: example visualization 

Zoom in: Inititialisation Phase 

Context View: 
Detailed information about 

function “initialize_”. 
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Vampir: example visualization 

Feature: Find Function 

Execution of function 
“initialize_” results in 

higher page fault 
rates. 
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Vampir: example visualization 

Computation Phase 

Computation phase 
results in higher 

floating point 
operations. 
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Vampir: example visualization 

                      MPI communication 
                     results in lower 
                      floating point 
                       operations. 

Zoom in: Computation Phase 
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Vampir: example visualization 

Zoom in: Finalisation Phase 

“Early reduce” 
bottleneck. 
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Vampir: example visualization 

Process Summary 

Function Summary: 
Overview of the 

accumulated information 
across all functions and for 
a collection of  processes. 

Process Summary: 
Overview of the 

accumulated information 
across all functions and for 

every process independently. 
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Vampir: example visualization 

Process Summary 

Find groups of similar 
processes and 

threads by using 
summarized function 

information. 
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Vampir: example visualization 

Communication matrix 
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Vampir - Demo 
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TAU is available at http://tau.uoregon.edu, 
Free download, open source, BSD license 



July 09, 2014 Slide 160 

TAU Performance System® 

Parallel performance framework and toolkit 
  Supports all HPC platforms, compilers, runtime system 
  Provides portable instrumentation, measurement, analysis 
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TAU Performance System®  

Instrumentation 
  Fortran, C++, C, UPC, Java, Python, Chapel 
  Automatic instrumentation 

Measurement and analysis support 
  MPI, OpenSHMEM, ARMCI, PGAS, DMAPP 

  pthreads, OpenMP, hybrid, other thread models    
  GPU, CUDA, OpenCL, OpenACC 
  Parallel profiling and tracing 
  Use of Score-P for native OTF2 and CUBEX generation 
  Efficient callpath proflles and trace generation using Score-P 

Analysis 
  Parallel profile analysis (ParaProf), data mining (PerfExplorer) 
  Performance database technology (PerfDMF, TAUdb) 
  3D profile browser 
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TAU Analysis 
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ParaProf Profile Analysis Framework 
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ParaProf: 3D Communication Matrix 
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ParaProf: Topology View 3D Torus (IBM BG/P) 
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Sparse matrix vector multiplication 

foreach row r in A 
  y[r.x] = 0 
  foreach non-zero element e in row 
    y[r.x] += e.value * x[e.y] 
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Sparse matrix vector multiplication 

Naïve OpenMP Algorithm: 

Distributes the rows of A evenly across the threads in the 
parallel region 

The distribution of the non-zero elements may influence the 
load balance in the parallel application 

#pragma omp parallel for 
foreach row r in A 
  y[r.x] = 0 
  foreach non-zero element e in row 
    y[r.x] += e.value * x[e.y] 
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Time spent in OpenMP barriers 

These threads spent up to 
20% of there running time 

in the barrier 
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Computational imbalance 

Master thread does 66% of 
the work 
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Sparse matrix vector multiplication 

Improved OpenMP Algorithm 

Distributes the rows of A dynamically across the threads in the 
parallel region 

#pragma omp parallel for schedule(dynamic,1000) 
foreach row r in A 
  y[r.x] = 0 
  foreach non-zero element e in row 
    y[r.x] += e.value * x[e.y] 
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Time spent in OpenMP barriers 

All threads spent similar 
time in the barrier 
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Computational imbalance 

Threads do nearly equal 
work 
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Time spent in OpenMP barriers 

Improved runtime 

Less time in 
OpenMP barrier 
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Computational imbalance 

Great imbalance for time 
spent in computational 

code 

Great imbalance for time 
spent in computational 

code 
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GemsFDTD case study 
Computational electromagnetics solver 

  originates from KTH General ElectroMagnetics Solvers project 
  finite-difference time-domain method for Maxwell equations 

MPI parallel versions in SPEC MPI2007 benchmark suite 

  original v1.1 (113.GemsFDTD) “medium” size 
  revised v2.0 (145.lGemsFDTD) “large” size 
  built with PGI 9.0.4 Fortran90 compiler (21k lines of code) 

  typical benchmark optimization: -fastsse -O3 -Mipa=fast,inline 

Results for Cray XT4@EPCC (“HECToR”) 

  using “ltrain” dataset from v2.0 benchmark (50 timesteps) 
  default Scalasca instrumentation for measurements 

  9 of 90 application user-level source routines specified in filter determined 
by scoring initial summary experiment 
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GemsFDTD v1 scalability on Cray XT4 

•  Solver iterations appear to scale very reasonably 

•  Execution time increases exponentially 
•  Due to very expensive initialization 

•  Scalability of the initial benchmark version (v1) was disappointing 
  and prevented execution at larger scales. 
•  Motivated comprehensive performance analysis to isolate 
  scalability problems, and ultimately re-engineering to resolve them. 

['ltrain' runs 
on CrayXT4 
HECToR] 

GemsFDTD v1 scalability on Cray XT4 
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Time for initialization broadcasts (v1.1) 

Time for initialization broadcasts (v1.1) 

•  Over 92% of total time for broadcasts 
  distributing parameters & working set 

•  37,464 broadcasts in total 
(most of them only 4 byes) 
from rank 0 
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Computation time in solver transforms (v1.1) 

Computation time in solver transforms (v1.1) 

•  Each solver component routine has 
a different imbalance, in severe cases 
leaving some processes without work 
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GemsFDTD case study 

Analysis results 
  Initialization dominated by numerous broadcasts 
  Expensive serial multi-block partition by rank 0 
  Computational imbalance and blocking communication in solver 

  Late sender 

Reengineering of the code 
  Aggregation of multiple data values into larger messages 
  Postpones allocations until all block information in broadcast 
  Using nonblocking communication to exchange blocks 
  Omitting idle states of 2 processes 
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GemsFDTD v1 & v2 scalability on Cray XT4 

['ltrain' runs 
on CrayXT4 
HECToR] 

GemsFDTD v1 & v2 scalability on Cray XT4 

•  Performance & scalability of 
  solver iterations also improved 

•  Much better initialization time benefits entire code 
•  but still relatively expensive compared to solver 
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COSMO-7/XE6 case study 
Regional climate and weather model 

  Developed by Consortium for Small-scale Modeling (COSMO) 
  DWD, MeteoSwiss and others 

  Non-hydrostatic limited-area atmospheric model (6.6km grid) 

MPI parallel version 4.12 (Jan-2011) 
  Built with PGI 10.9 Fortran90 compiler (222k lines of code) 

MeteoSwiss operational 24-hour forecast of 06-Dec-2010 
  Western Europe 393x338x60 resolution, 1440 timesteps 

Run with 984 processes on 'palu' Cray XE6 at CSCS 
  28x35 compute grid + 4 dedicated I/O processes 
  Used 41 Opteron compute nodes each with 24 cores 
  Scalasca trace measurement with 19 of 178 routines filtered 
  44GB trace written in 23s and analyzed in 82s 

Courtesy of Oliver Fuhrer (MeteoSwiss) & CSCS 
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COSMO/XE6 physics computation time 

Distribution of 
compute time 
for 2 cabinets 
[gray=unused] 

4 ranks 980–983 
dedicated for I/O 

56% of total time is local computation, 
of which 21% is in organize_physics 
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COSMO/XE6 physics computation time 

56% of total time is local computation, 
of which 21% is in organize_physics 

Application's 28x35 
MPI Cartesian topology 
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COSMO/XE6 physics computation imbalance 

Refinement of origin of time 
executing local computation 
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COSMO/XE6 computational overload (geo) 

Geographical origin of some 
computational overload ... 

COSMO-7 
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COSMO/XE6 computational overload (hydro) 

… but 5x more overload 
moves with cloud and rain 
computations of snowstorm 
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COSMO/XE6 collective wait at N x N time 

~5% of total time blocked 
waiting in MPI_Allreduces 
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COSMO/XE6 late sender waiting time 

10% of total time blocked in 
Late Sender communication 
in exchg_boundaries ... 
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COSMO/XE6 late sender communications 

… however, most instances 
of Late Senders for receives 
in organize_dynamics 
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Summary 

You’ve been introduced to a variety of tools, and had an 
opportunity to try them with a prepared example code 

  with guidance to apply and use the tools most effectively 

Tools provide complementary capabilities 
  computational kernel & processor analyses 
  communication/synchronization analyses 
  load-balance, scheduling, scaling, … 

Tools are designed with various trade-offs 
  general-purpose versus specialized 
  platform-specific versus agnostic 
  simple/basic versus complex/powerful 
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Tool selection 

Which tools you use and when you use them likely to depend 
on situation 
  which are available on (or for) your computer system 
  which support your programming paradigms and languages 
  which you are familiar (comfortable) with using 

also depends on the type of issue you have or suspect 

Awareness of (potentially) available tools can help finding the 
most appropriate tools 
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Workflow (getting started) 

First ensure that the parallel application runs correctly 
  No-one will care how quickly you can get invalid answers or produce 

a directory full of corefiles 
  Parallel debuggers help isolate known problems 
  Correctness checking tools can help identify other issues 
  (that might not cause problems right now, but will eventually) 

  e.g., race conditions, invalid/non-compliant usage 

Generally valuable to start with an overview of execution 
performance 
  Fraction of time spent in computation vs comm/synch vs I/O 
  Which sections of the application/library code are most costly 

and how it changes with scale or different configurations 
  Processes vs threads, mappings, bindings 
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Workflow (communication/synchronization) 

Communication/synchronization issues generally apply to 
every computer system (to different extents) and typically 
grow with the number of processes/threads 
  Weak scaling: fixed computation per thread, and perhaps fixed 

localities, but increasingly distributed 
  Strong scaling: constant total computation, increasingly divided 

amongst threads, while communication grows 
  Collective communication (particularly of type “all-to-all”) result in 

increasing data movement 
  Synchronizations of larger groups are increasingly costly 
  Load-balancing becomes increasingly challenging, and imbalances 

increasingly expensive 
  generally manifests as waiting time at following collective ops 
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Workflow (wasted waiting time) 

Waiting times are difficult to determine in basic profiles 
  Part of the time each process/thread spends in 

communication & 
synchronization operations may be wasted waiting time 

  Need to correlate event times between processes/
threads 
  Post-mortem event trace analysis avoids interference and 

provides a complete history 
  Scalasca automates trace analysis and ensures waiting times are 

completely quantified 
  Vampir allows interactive exploration and detailed examination of 

reasons for inefficiencies 
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Workflow (core computation) 

Effective computation within processors/cores is also vital 
  Optimized libraries may already be available 
  Optimization using compilers can also do a lot 

  provided the code is clearly written and not too complex 
  appropriate directives and other hints can also help 

  Processor hardware counters can also provide insight 
  although hardware-specific interpretation required 

  Tools available from processor and system vendors help 
navigate and interpret processor-specific performance 
issues 
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Presented tools 

Score-P 
  community-developed instrumenter & measurement 

libraries for parallel profiling and event tracing 
Scalasca 

  automated event-trace analysis 
CUBE 

  interactive parallel profile analyses 
Vampir 

  interactive event-trace visualizations and analyses 
TAU 

  comprehensive performance system 


