
July 09, 2014

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Performance Analysis
An Introduction

| Florian Janetzko

July 09, 2014 Slide 2

Acknowledgements

Slides taken partially from the
Virtual Institute – High Productivity Supercomputing (VI-HPS)

http://www.vi-hps.org

July 09, 2014 Slide 3

Outline

  Introduction
  Hardware development
  Tuning basics

  Code development
  Performance analysis and tuning
  Summary

July 09, 2014 Slide 4

Performance: an old problem

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Difference Engine

July 09, 2014 Slide 5

HPC hardware development

Moore's law is still in charge, but
  Clock rates no longer increase
  Performance gains only through

increased parallelism

Optimizations of applications more
difficult

  Increasing application complexity
  Multi-physics
  Multi-scale

  Increasing machine complexity
  Hierarchical networks / memory
  More CPUs / multi-core

  Challenges for HPC applications!

July 09, 2014 Slide 6

Example: XNS

CFD simulation of unsteady flows
  Developed by CATS / RWTH Aachen
  Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies

MPI parallel version
  >40,000 lines of Fortran & C
  DeBakey blood-pump data set (3,714,611 elements)

Hæmodynamic flow
pressure distribution Partitioned finite-element mesh

July 09, 2014 Slide 7

XNS wait-state analysis on BG/L (2007)

Computation
Communication
Waiting time

July 09, 2014 Slide 8

Tuning applications

Successful engineering is a combination of
  The right algorithms and libraries
  Compiler flags and directives
  Thinking !!!

Measurement is better than guessing
  To determine performance bottlenecks
  To compare alternatives
  To validate tuning decisions and optimizations

 After each step!

July 09, 2014 Slide 9

Code development – “Golden rules”

Nobody cares how fast you can compute
a wrong answer!

Programmer’s rule of code development:

It's easier to optimize a slow correct program
than to debug a fast incorrect one!

Performance analyst’s deduction:

July 09, 2014 Slide 10

Outline

  Introduction
  Code development

  Code development stages and tools
Marmot
MUST
Thread Inspector
TotalView

  Performance analysis and tuning
  Summary

July 09, 2014 Slide 11

Code development stages

1.  Programming
  Tools: editors with syntax highlighting (e.g. vim, emacs,…),

development tools (e.g. Parallel Tools Platform (PTP), syntax
checker (e.g. forcheck)

2.  Debugging
  Tools: write/printf statements, classical debuggers (TotalView,

DDT, GDB, …), MARMOT, MUST (for MPI codes), Intel®
Inspector (for OpenMP codes)

3.  Performance
  Tools: performance analysis tools (Scalasca, Vampir, TAU, …)

July 09, 2014 Slide 12

Code development – Programming

July 09, 2014 Slide 13

Selected Features
  Verification of conformance to all levels of Fortran

standard
  Full static analysis of separate program units
  Reverse engineering tool
  Generates call trees, callby trees, use trees and module

dependencies
  Provides an IDE

http://www.forcheck.nl

Code development – FORCHECK

July 09, 2014 Slide 14

Code development – Syntax highlighting

Syntax highlighting

July 09, 2014 Slide 15

What is PTP:
  Integrated development environment (IDE) for parallel

application development
  Based on Eclipse
  Open Source
  Developers:

  IBM, U.Oregon, UTK, Heidelberg University, NCSA,
UIUC, JSC, ...

http://www.eclipse.org/

Code development – PTP

July 09, 2014 Slide 16

Code development – Eclipse

July 09, 2014 Slide 17

Code development stages

1.  Programming
  Tools: editors with syntax highlighting (e.g. vim, emacs,…),

development tools (e.g. Parallel Tools Platform (PTP), syntax
checker (e.g. forcheck)

2.  Debugging
  Tools: write/printf statements, classical debuggers (TotalView,

DDT, GDB, …), MARMOT, MUST (for MPI codes), Intel®
Inspector (for OpenMP codes)

3.  Performance
  Tools: performance analysis tools (Scalasca, Vampir, TAU, …)

July 09, 2014 Slide 18

Code development – debugging

Murphy‘s law:

“If the code works the first time it simply means, that
the bug is hidden more carefully”

July 09, 2014 Slide 19

MARMOT is freely available at
http://www.hlrs.de/organization/av/amt/projects/marmot/

July 09, 2014 Slide 20

Code development – Marmot

Tool for analyzing and checking MPI applications
  Checks usage of MPI calls during runtime
  Supports C and Fortran

Features
  Reports violations of the MPI-standard
  Reports unusual behavior or possible problems
  Displayed when harmless but remarkable behavior occurs
  MPI-calls are traced on each node throughout the whole application
  When detecting a deadlock the last few calls (as configured by the

user) can be traced back on each node

July 09, 2014 Slide 21

Code development – Marmot Usage

Using marmot:
  Compile your application with the corresponding marmot wrapper:

marmotcc, marmotcxx, marmotf77, marmotf90
  Set marmot options via environment variables
  Run your application with n+1 MPI tasks

Some environment variables:

Variable Possible values
MARMOT_DEBUG_MODE 0: errors

1: errors and warnings
2: errors, warnings and remarks

MARMOT_LOGFILE_TYPE 0: ASCII
1: HTML
2: CUBE

July 09, 2014 Slide 22

Code development – Marmot example

Example code
  4 ranks on a ring
  Each rank sends a message to its right neighbor and

receives a message from its left neighbor
  Compiled with

 marmotcc –o 7.1.x 7.1c

Marmot example output (HTML)

July 09, 2014 Slide 23

Code development – Marmot example
 46 ...
 47 left = (myrank-1+nranks)%nranks;
 48 right = (myrank+1)%nranks;
 49
 50 for (i=1;i<=nranks;i++)
 51 {
 52 summe = recvbuf + myrank;
 53 MPI_Ssend(&summe, 1, MPI_INT, right, myrank,
 MPI_COMM_WORLD);
 54 MPI_Recv(&recvbuf, 1, MPI_INT, left, left,
 MPI_COMM_WORLD, &status);
 55 MPI_Wait(&request, &status);
 56 }
 57 ...

July 09, 2014 Slide 24

MUST is freely available (BSD license) at
https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST

July 09, 2014 Slide 25

Code development – MUST

Tool for analyzing and checking MPI applications
  Checks usage of MPI calls during runtime
  Supports C and Fortran

MUST checks for the following classes of errors (among others)
  Communicator usage
  Datatype usage
  Leak checks (MPI resources not freed before calling MPI Finalize)
  Overlapping buffers passed to MPI
  Deadlocks resulting from MPI calls
  Basic checks for thread level usage (MPI_Init_thread)

July 09, 2014 Slide 26

Code development – MUST Usage

Option Explanation
none •  Very slow (< 32 processes)

•  Detects errors even if application crashes
•  Needs one extra process

--must:nodesize Y •  Fast
•  Detects errors even if application crashes
•  Needs 1+[X/(Y-1)] extra processes

--must:nocrash •  Fast
•  Detects errors only if the application does not crash
•  Needs one extra process

 mustrun --envall -np X application.x

July 09, 2014 Slide 27

Code development – MUST example

Example code
  4 ranks on a ring
  Each rank sends a message to its right neighbor and

receives a message from its left neighbor
  Compiled with

 mpicc –o 7.1.x 7.1c
  Started with

 mustrun --envall -np 4 7.1.x

MUST example output (HTML)

July 09, 2014 Slide 28

Thread Inspector is a commercial tool
http://software.intel.com/en-us/intel-inspector-xe

July 09, 2014 Slide 29

Intel® Inspector Memory & Thread Analyzer

  Memory error and thread checker tool
  Supported languages on linux systems

  C/C++, Fortran
  Maps errors to the source code line and call stack
  Detects problems that are not recognized by the

compiler (e.g. race conditions, data dependencies)

Never use an OpenMP parallelized code in production without
checking for race conditions

Alternatives: Threadspotter, Coverity Thread Analyzer, Sun Thread Analyzer,
Helgrind

July 09, 2014 Slide 30

July 09, 2014 Slide 31

TotalView is a commercial debugger
http://www.roguewave.com/products/totalview.aspx

July 09, 2014 Slide 32

Code development – TotalView debugger

Very powerful tool for code debugging

  Supports C, C++, Fortran
  Available for many platforms
  serial, MPI, OpenMP, hybrid MPI/OpenMP supported
  Some features:

 Memory debugging
  Breakpoints, evaluations points, barriers, batch

debugging
  Replay engine
  2D Array view, call graphs, value manipulations

July 09, 2014 Slide 33

Code development – TotalView debugger

Compile your code with debug flags

mpif90 -o prog.x -debug program.f90 # Fortran, Intel compiler
mpicc -o prog.x -debug program.c # C, Intel compiler
mpicxx -o prog.x -debug program.cc # C++, Intel compiler

  -g -O0 also possible (as with most compilers)

TotalView execution modes
1.  GUI
2.  Script (tvscript)

July 09, 2014 Slide 34

Code development – TotalView

Choose your executable

Switch on memory
debugging if needed

Choose program
arguments if needed

July 09, 2014 Slide 35

Code development – TotalView

Choose MPI settings

Choose MPI
version

Choose number of
MPI tasks

Choose number of
compute nodes

July 09, 2014 Slide 36

Code development – TotalView

Source code
window

Action points

Process and
thread view

Navigation

July 09, 2014 Slide 37

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools
  Use cases

  Summary

July 09, 2014 Slide 38

Performance factors of applications

“Sequential” factors
  Computation

 Choose right algorithm, use compiler to optimize
  Cache and memory

 Tough, only limited tool support
  Input / output

 Often not given enough attention
“Parallel” factors

  Partitioning / decomposition
  Communication (i.e., message passing)
  Multithreading
  Synchronization / locking

 Good tool support

July 09, 2014 Slide 39

Parallelism: Efficiency and Scalability

Efficiency:

Scalability:
  Strong scaling (problem size constant, increase n)
  Weak scaling (problem-size increase proportional to n)

E(n): Efficiency on n cores/CPUS
t(1) : time on 1 core/CPU
t(n) : time on n cores/CPUs

Speed-up:

S(n): Speed-up on n cores/CPUS

July 09, 2014 Slide 40

Parallelism: Ideal Scalability

0

1

1

10

1 1024 2048 4096

Sp
ee

d-
up

 w
ea

k
sc

ai
ng

Sp
ee

d-
up

 s
tr

on
g

sc
al

in
g

Number of cores

strong scaling
weak scaling

July 09, 2014 Slide 41

Amdahl’s Law

Limit of scalability:

Sr: Real speed-up
α : serial part (cannot be parallelized)
n : number of cores

Example:
 α = 0.1
 n = 8

 Sr = 4.7

July 09, 2014 Slide 42

Performance engineering workflow

  Prepare application (with symbols),
insert extra code (probes/hooks)

  Collection of data relevant to
execution performance analysis

  Calculation of metrics, identification
of performance metrics

  Presentation of results in an intuitive/
understandable form

  Modifications intended to eliminate/
reduce performance problems

Preparation

Measurement

Analysis

Examination

Optimization

July 09, 2014 Slide 43

The 80/20 rule

Programs typically spend 80% of their time in 20% of
the code

Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application
 Know when to stop!

Don't optimize what does not matter
 Make the common case fast!

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

July 09, 2014 Slide 44

Metrics of performance

What can be measured?
  A count of how often an event occurs

  E.g., the number of MPI point-to-point messages sent
  The duration of some interval

  E.g., the time spent in these send calls
  The size of some parameter

  E.g., the number of bytes transmitted by these calls

Derived metrics
  E.g., rates / throughput
  Needed for normalization

July 09, 2014 Slide 45

Example metrics

Following example metrics can be measured
  Execution time
  Number of function calls
  CPI

  CPU cycles per instruction
  FLOPS

  Floating-point operations executed per second

July 09, 2014 Slide 46

Execution time

Wall-clock time
  Includes waiting time: I/O, memory, other system activities
  In time-sharing environments also the time consumed by other

applications

CPU time
  Time spent by the CPU to execute the application
  Does not include time the program was context-switched out

  Problem: Does not include inherent waiting time (e.g., I/O)
  Problem: Portability? What is user, what is system time?

Problem: Execution time is non-deterministic
  Use mean or minimum of several runs

July 09, 2014 Slide 47

Inclusive
  Information of all sub-elements aggregated into single value

Exclusive
  Information cannot be subdivided further

Inclusive

Inclusive vs. exclusive values

Exclusive

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;
}

July 09, 2014 Slide 48

Classification of measurement techniques

How are performance measurements triggered?
  Sampling
  Code instrumentation

How is performance data recorded?
  Profiling / Runtime summarization
  Tracing

How is performance data analyzed?
  Online
  Post mortem

July 09, 2014 Slide 49

Sampling

Running program is periodically interrupted
to take measurement
  Timer interrupt, OS signal, or HWC overflow
  Service routine examines return-address stack
  Addresses are mapped to routines using

symbol table information

Statistical inference of program behavior
  Not very detailed information on highly

volatile metrics
  Requires long-running applications

Works with unmodified executables

Time
main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

July 09, 2014 Slide 50

Instrumentation

Time

Measurement

Measurement code is inserted such that
every event of interest is captured directly
  Can be done in various ways

Advantage:
  Much more detailed information

Disadvantage:
  Processing of source-code / executable

necessary
  Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

July 09, 2014 Slide 51

Instrumentation techniques

Static instrumentation
  Program is instrumented prior to execution

Dynamic instrumentation
  Program is instrumented at runtime

Code is inserted
  Manually
  Automatically

  By a preprocessor / source-to-source translation tool
  By a compiler
  By linking against a pre-instrumented library / runtime system
  By binary-rewrite / dynamic instrumentation tool

July 09, 2014 Slide 52

Critical issues

Accuracy
  Intrusion overhead

  Measurement itself needs time and thus lowers performance
  Perturbation

  Measurement alters program behaviour
  E.g., memory access pattern

  Accuracy of timers & counters

Granularity
  How many measurements?
  How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

July 09, 2014 Slide 53

Classification of measurement techniques

How are performance measurements triggered?
  Sampling
  Code instrumentation

How is performance data recorded?
  Profiling / Runtime summarization
  Tracing

How is performance data analyzed?
  Online
  Post mortem

July 09, 2014 Slide 54

Profiling / Runtime summarization

Recording of aggregated information
  Total, maximum, minimum, …

For measurements
  Time
  Counts

  Function calls
  Bytes transferred
  Hardware counters

Over program and system entities
  Functions, call sites, basic blocks, loops, …
  Processes, threads

 Profile = summarization of events over execution interval

July 09, 2014 Slide 55

Types of profiles

Flat profile
  Shows distribution of metrics per routine / instrumented region
  Calling context is not taken into account

Call-path profile
  Shows distribution of metrics per executed call path
  Sometimes only distinguished by partial calling context

(e.g., two levels)

Special-purpose profiles
  Focus on specific aspects, e.g., MPI calls or OpenMP constructs
  Comparing processes/threads

July 09, 2014 Slide 56

Tracing

Recording information about significant points (events) during
execution of the program
  Enter / leave of a region (function, loop, …)
  Send / receive a message, …

Save information in event record
  Timestamp, location, event type
  Plus event-specific information (e.g., communicator,

sender / receiver, …)

Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of
 event records

July 09, 2014 Slide 57

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

sy
nc

hr
on

iz
e(

d)

void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

instrument

Global trace view

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

July 09, 2014 Slide 58

Tracing vs. Profiling

Tracing advantages
  Event traces preserve the temporal and spatial relationships among

individual events (context)
  Allows reconstruction of dynamic application behavior on any

required level of abstraction
  Most general measurement technique

  Profile data can be reconstructed from event traces

Disadvantages
  Traces can very quickly become extremely large
  Writing events to file at runtime causes perturbation
  Writing tracing software is complicated

  Event buffering, clock synchronization, ...

July 09, 2014 Slide 59

Classification of measurement techniques

How are performance measurements triggered?
  Sampling
  Code instrumentation

How is performance data recorded?
  Profiling / Runtime summarization
  Tracing

How is performance data analyzed?
  Online
  Post mortem

July 09, 2014 Slide 60

Online analysis

Performance data is processed during measurement run
  Process-local profile aggregation
  More sophisticated inter-process analysis using

  “Piggyback” messages
  Hierarchical network of analysis agents

Inter-process analysis often involves application steering to
interrupt and re-configure the measurement

July 09, 2014 Slide 61

Post-mortem analysis

Performance data is stored at end of measurement run

Data analysis is performed afterwards
  Automatic search for bottlenecks
  Visual trace analysis
  Calculation of statistics

July 09, 2014 Slide 62

Example: Time-line visualization

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
foo
bar

58 60 62 64 66 68 70

B

A

July 09, 2014 Slide 63

No single solution is sufficient!

 A combination of different methods, tools and techniques is
typically needed!
  Analysis

Statistics, visualization, automatic analysis, data mining, ...

  Measurement
Sampling / instrumentation, profiling / tracing, ...

  Instrumentation
Source code / binary, manual / automatic, ...

July 09, 2014 Slide 64

Typical performance analysis procedure

Do I have a performance problem at all?
  Time / speedup / scalability measurements

What is the key bottleneck (computation / communication)?
  MPI / OpenMP / flat profiling

Where is the key bottleneck?
  Call-path profiling, detailed basic block profiling

Why is it there?
  Hardware counter analysis, trace selected parts to keep trace size

manageable

Does the code have scalability problems?
  Load imbalance analysis, compare profiles at various sizes function-by-

function

July 09, 2014 Slide 65

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues

Computational load imbalance
MPI patterns
OpenMP patterns

  Selected performance analysis tools
  Use cases

  Summary

July 09, 2014 Slide 66

Computational imbalance

Absolute difference to average exclusive execution time
  Focusses only on computational parts

Captures global imbalances
  Based on entire measurement
  Does not compare individual instances of function calls

July 09, 2014 Slide 67

Overload

Processes/threads with exclusive execution time above average

July 09, 2014 Slide 68

Overload, single participant

Call-paths executed by single process/thread

July 09, 2014 Slide 69

Underload

Processes/threads with exclusive execution time below average

July 09, 2014 Slide 70

Underload, non-participation

Call-paths not executed by a subset of processes/threads

July 09, 2014 Slide 71

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues

Computational load imbalance
MPI patterns
OpenMP patterns

  Selected performance analysis tools
  Use cases

  Summary

July 09, 2014 Slide 72

Late sender

  Waiting time caused by a blocking receive operation posted earlier
than the corresponding send operation

  Applies to blocking as well as non-blocking communication

time

location

MPI_Recv MPI_Irecv

MPI_Send

MPI_Wait

MPI_Send

time

location

MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_Isend MPI_Wait MPI_Wait

July 09, 2014 Slide 73

Late receiver

  Waiting time caused by a blocking send operation posted earlier than
the corresponding receive operation

  Calculated by receiver but waiting time attributed to sender
  Does currently not apply to non-blocking sends

time

location

MPI_Recv MPI_Irecv

MPI_Send

MPI_Wait

MPI_Send

July 09, 2014 Slide 74

Late post

  MPI_Win_start (top) or MPI_Win_complete (bottom)
wait until exposure epoch is opened by MPI_Win_post

  Which of the two calls blocks is implementation dependent

time

location

Win_post

Win_start Put

Win_start

Win_complete

Win_wait

Put Win_complete

July 09, 2014 Slide 75

Early transfer

  Time spent waiting in RMA operation on origin(s) started before
exposure epoch was opened on target

time

location

Win_post

Win_complete Win_start Put

Win_wait

July 09, 2014 Slide 76

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues

Computational load imbalance
MPI patterns
OpenMP patterns

  Selected performance analysis tools
  Use cases

  Summary

July 09, 2014 Slide 77

OpenMP management time

  Time spent on master thread for creating/destroying OpenMP
thread teams

time

location

parallel region body

parallel region body

parallel region body serial serial

July 09, 2014 Slide 78

OpenMP idle threads

  Time spent idle on CPUs reserved for worker threads

time

location

parallel region body

parallel region body

parallel region body serial serial

July 09, 2014 Slide 79

OpenMP waiting at barrier

  Time spent waiting in front of a barrier call until the last process
reaches the barrier operation

  Applies to: Implicit/explicit barriers

time

location

OpenMP barrier

OpenMP barrier

OpenMP barrier

OpenMP barrier

July 09, 2014 Slide 80

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools

Score-P
Scalasca
CUBE
Vampir
TAU

  Use cases
  Summary

July 09, 2014 Slide 81

Fragmentation of tools landscape

Several performance tools co-exist
  Separate measurement systems and output formats
  Complementary features and overlapping functionality
  Redundant effort for development and maintenance
  Limited or expensive interoperability
  Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

July 09, 2014 Slide 82

SILC Project Idea

Start a community effort for a common infrastructure
  Score-P instrumentation and measurement system
  Common data formats OTF2 and CUBE4

Developer perspective:
  Save manpower by sharing development resources
  Invest in new analysis functionality and scalability
  Save efforts for maintenance, testing, porting, support, training

User perspective:
  Single learning curve
  Single installation, fewer version updates
  Interoperability and data exchange

SILC project funded by BMBF
Close collaboration PRIMA project

funded by DOE

July 09, 2014 Slide 83

Partners

Forschungszentrum Jülich, Germany
German Research School for Simulation Sciences, Aachen,

Germany
Gesellschaft für numerische Simulation mbH Braunschweig,

Germany
RWTH Aachen, Germany
Technische Universität Dresden, Germany
Technische Universität München, Germany
University of Oregon, Eugene, USA

July 09, 2014 Slide 84

Score-P Functionality

Provide typical functionality for HPC performance tools
Support all fundamental concepts of partner’s tools

Instrumentation (various methods)
Flexible measurement without re-compilation:

  Basic and advanced profile generation
  Event trace recording
  Online access to profiling data

MPI, OpenMP, and hybrid parallelism (and serial)
Enhanced functionality (OpenMP 3.0, CUDA,

highly scalable I/O)

July 09, 2014 Slide 85

Design Goals

Functional requirements
  Generation of call-path profiles and event traces
  Using direct instrumentation, later also sampling
  Recording time, visits, communication data, hardware counters
  Access and reconfiguration also at runtime
  Support for MPI, OpenMP, basic CUDA, and all combinations

  Later also OpenCL/HMPP/PTHREAD/…

Non-functional requirements
  Portability: all major HPC platforms
  Scalability: petascale
  Low measurement overhead
  Easy and uniform installation through UNITE framework
  Robustness
  Open Source: New BSD License

July 09, 2014 Slide 86

Score-P Architecture

Instrumentation wrapper

Application (MPI×OpenMP×CUDA)

Vampir Scalasca Periscope TAU

Compiler

Compiler

OPARI 2

POMP2

CUDA

CUDA

User

User

PDT

TAU

Score-P measurement infrastructure

Event traces (OTF2) Call-path profiles
(CUBE4, TAU)

Online interface

Hardware counter (PAPI, rusage)

PMPI

MPI

July 09, 2014 Slide 87

Code instrumentation with Score-P

Automatic instrumentation
  Prefix compiler and linker command e.g. in your Makefile

Manual instrumentation
  Add instructions to your code manually
  Available for Fortran (requires C preprocessor), C, and C++
  Can be used to

  Add measurements
  Disable (automatically instrumented) measurements

 mpicc … scorep mpicc …
 mpif90 … scorep mpif90 …

July 09, 2014 Slide 88

Score-P User Instrumentation API (Fortran)

Requires processing by the C preprocessor

#include "scorep/SCOREP_User.inc"

subroutine foo(…)
 ! Declarations
 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…
 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
 SCOREP_USER_REGION_TYPE_LOOP)
 do i=1,100
 [...]
 end do
 SCOREP_USER_REGION_END(solve)
 ! Some more code…
end subroutine

July 09, 2014 Slide 89

Score-P User Instrumentation API (C/C++)

#include "scorep/SCOREP_User.h"

void foo()
{
 /* Declarations */
 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */
 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
 SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 SCOREP_USER_REGION_END(solve)
 /* Some more code… */
}

July 09, 2014 Slide 90

Score-P Measurement Control API

Can be used to temporarily disable measurement for certain intervals
  Annotation macros ignored by default
  Enabled with [--user] flag

#include “scorep/SCOREP_User.inc”

subroutine foo(…)
 ! Some code…
 SCOREP_RECORDING_OFF()
 ! Loop will not be measured
 do i=1,100
 [...]
 end do
 SCOREP_RECORDING_ON()
 ! Some more code…
end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {
 /* Some code… */
 SCOREP_RECORDING_OFF()
 /* Loop will not be measured */
 for (i = 0; i < 100; i++) {
 [...]
 }
 SCOREP_RECORDING_ON()
 /* Some more code… */
}

Fortran (requires C preprocessor) C / C++

July 09, 2014 Slide 91

Measurement configuration: scorep-info

Score-P measurements are configured via environment
variables: % scorep-info config-vars --full
SCOREP_ENABLE_PROFILING
 Description: Enable profiling

 [...]
SCOREP_ENABLE_TRACING
 Description: Enable tracing

 [...]
SCOREP_TOTAL_MEMORY
 Description: Total memory in bytes for the measurement system

 [...]
SCOREP_EXPERIMENT_DIRECTORY
 Description: Name of the experiment directory

 [...]
SCOREP_FILTERING_FILE
 Description: A file name which contain the filter rules

 [...]
SCOREP_METRIC_PAPI
 Description: PAPI metric names to measure

 [...]
SCOREP_METRIC_RUSAGE
 Description: Resource usage metric names to measure

 [... More configuration variables ...]

July 09, 2014 Slide 92

Example summary analysis result scoring

Report scoring as textual output

Region/callpath classification
  MPI (pure MPI library functions)
  OMP (pure OpenMP functions/regions)
  USR (user-level source local computation)
  COM (“combined” USR + OpenMP/MPI)
  ANY/ALL (aggregate of all region types)

% scorep-score scorep_example_sum/profile.cubex
Estimated aggregate size of event trace (total_tbc): 35955109198 bytes
Estimated requirements for largest trace buffer (max_tbc): 9043348074 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
 or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
 ALL 9043348074 933.55 100.0 ALL
 USR 9025830154 450.52 48.3 USR
 OMP 16431872 480.67 51.5 OMP
 COM 997150 0.67 0.1 COM
 MPI 88898 1.69 0.2 MPI

USR

USR

COM

COM USR

OMP MPI

33.5 GB total memory
8.4 GB per rank!

July 09, 2014 Slide 93

Example summary analysis report
breakdown

Score report breakdown by region

% scorep-score -r scorep_example_sum/profile.cubex
 [...]
flt type max_tbc time % region
 ALL 9043348074 933.55 100.0 ALL
 USR 9025830154 450.52 48.3 USR
 OMP 16431872 480.67 51.5 OMP
 COM 997150 0.67 0.1 COM
 MPI 88898 1.69 0.2 MPI

 USR 2894950740 137.99 14.8 matmul_sub_
 USR 2894950740 119.71 12.8 matvec_sub_
 USR 2894950740 175.59 18.8 binvcrhs_
 USR 127716204 6.08 0.7 binvrhs_
 USR 127716204 7.38 0.8 lhsinit_
 USR 94933520 3.76 0.4 exact_solution_
 OMP 771840 0.05 0.0 !$omp parallel @exch_...
 OMP 771840 0.04 0.0 !$omp parallel @exch_...
 OMP 771840 0.05 0.0 !$omp parallel @exch_...
 [...]

USR

USR

COM

COM USR

OMP MPI

More than
8 GB just for

these 6 regions

July 09, 2014 Slide 94

Analysis results

Summary measurement analysis score reveals
  Total size of event trace would be ~34 GB
  Maximum trace buffer size would be ~8.5 GB per rank

  smaller buffer would require flushes to disk during measurement
resulting in substantial perturbation

  99.8% of the trace requirements are for USR regions
  purely computational routines never found on COM call-paths

common to communication routines or OpenMP parallel regions
  These USR regions contribute around 32% of total time

  however, much of that is very likely to be measurement overhead
for frequently-executed small routines

Advisable to tune measurement configuration
  Specify an adequate trace buffer size
  Specify a filter file listing (USR) regions not to be measured

July 09, 2014 Slide 95

Example Summary Analysis Report Filtering

Report scoring with prospective filter listing 6 USR regions

% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhs*
matmul_sub*
matvec_sub*
exact_solution*
binvrhs*
lhs*init*
timer_*

% scorep-score -f ../config/scorep.filt scorep_example_sum/profile.cubex
Estimated aggregate size of event trace (total_tbc): 70086838 bytes
Estimated requirements for largest trace buffer (max_tbc): 17521726 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
 or reduce requirements using file listing names of USR regions to be filtered.)

67 MB of memory in total,
17 MB per rank!

July 09, 2014 Slide 96

New summary analysis result scoring

Scoring of new analysis report as textual output

Significant reduction in runtime (measurement overhead)
  Not only reduced time for USR regions, but MPI/OMP reduced too!

Further measurement tuning (filtering) may be appropriate
  e.g., use “timer_*” to filter timer_start_, timer_read_, etc.

% scorep-score scorep_example_sum_with_filter/profile.cubex
Estimated aggregate size of event trace (total_tbc): 70086838 bytes
Estimated requirements for largest trace buffer (max_tbc): 17521726 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
 or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
 ALL 17521726 215.07 100.0 ALL
 OMP 16431872 212.86 99.0 OMP
 COM 997150 0.68 0.3 COM
 MPI 88898 1.54 0.7 MPI
 USR 3806 0.00 0.0 USR

July 09, 2014 Slide 97

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools

Score-P
Scalasca
CUBE
Vampir
TAU

  Use cases
  Summary

July 09, 2014 Slide 98

Scalasca is available at http://www.scalasca.org/,
get support via scalasca@fz-juelich.de

July 09, 2014 Slide 99

The Scalasca project: Overview

Project started in 2006
  Initial funding by Helmholtz Initiative & Networking Fund
  Many follow-up projects

Follow-up to pioneering KOJAK project (started 1998)
  Automatic pattern-based trace analysis

Now joint development of
  Jülich Supercomputing Centre

  German Research School for Simulation Sciences

July 09, 2014 Slide 100

Scalasca 2.0 features

Open source, New BSD license
Fairly portable

  IBM Blue Gene, IBM SP & blade clusters, Cray XT, SGI Altix,
Solaris & Linux clusters, ...

Uses Score-P instrumenter & measurement libraries
  Scalasca 2.0 core package focuses on trace-based analyses
  Supports common data formats

  Reads event traces in OTF2 format
  Writes analysis reports in CUBE4 format

Current limitations:
  No support for nested OpenMP parallelism and tasking
  Unable to handle OTF2 traces containing CUDA events

July 09, 2014 Slide 101

Scalasca trace analysis

Scalasca workflow

Instr.
target
application

Measurement
library

HWC
Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler /

linker

Instrumented
executable

Source
modules

R
ep

or
t

m
an

ip
ul

at
io

n

Which problem? Where in the
program?

Which
process?

July 09, 2014 Slide 102

Scalasca command

One command for (almost) everything…

  The ‘scalasca -instrument’ command is deprecated and only provided
for backwards compatibility with Scalasca 1.x.

  Recommended: use Score-P instrumenter directly

% scalasca
Scalasca 2.0
Toolset for scalable performance analysis of large-scale applications
usage: scalasca [-v][-n][c] {action}
 1. prepare application objects and executable for measurement:
 scalasca –instrument <compile-or-link-command> # skin (using scorep)
 2. run application under control of measurement system:
 scalasca –analyze <application-launch-command> # scan
 3. interactively explore measurement analysis report:
 scalasca –examine <experiment-archive|report> # square

 -v, --verbose enable verbose commentary
 -n, --dry-run show actions without taking them
 -c, --show-config show configuration and exit

July 09, 2014 Slide 103

Scalasca compatibility command: skin

Scalasca application instrumenter

  Provides compatibility with Scalasca 1.x
  Recommended: use Score-P instrumenter directly

% skin
Scalasca 2.0: application instrumenter using scorep
usage: skin [-v] [–comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>
 -comp={all|none|...}: routines to be instrumented by compiler
 (... custom instrumentation specification for compiler)
 -pdt: process source files with PDT instrumenter
 -pomp: process source files for POMP directives
 -user: enable EPIK user instrumentation API macros in source code
 -v: enable verbose commentary when instrumenting

 --*: options to pass to Score-P instrumenter

July 09, 2014 Slide 104

Scalasca convenience command: scan

Scalasca measurement collection & analysis nexus

% scan
Scalasca 2.0: measurement collection & analysis nexus
usage: scan {options} [launchcmd [launchargs]] target [targetargs]
 where {options} may include:
 -h Help: show this brief usage message and exit.
 -v Verbose: increase verbosity.
 -n Preview: show command(s) to be launched but don't execute.
 -q Quiescent: execution with neither summarization nor tracing.
 -s Summary: enable runtime summarization. [Default]
 -t Tracing: enable trace collection and analysis.
 -a Analyze: skip measurement to (re-)analyze an existing trace.
 -e exptdir : Experiment archive to generate and/or analyze.
 (overrides default experiment archive title)
 -f filtfile : File specifying measurement filter.
 -l lockfile : File that blocks start of measurement.

July 09, 2014 Slide 105

Automatic measurement configuration

scan configures Score-P measurement by setting some
environment variables automatically
  e.g., experiment title, profiling/tracing mode, filter file, …
  Precedence order:

  Command-line arguments
  Environment variables already set
  Automatically determined values

Also, scan includes consistency checks and prevents
corrupting existing experiment directories

For tracing experiments, after trace collection completes then
automatic parallel trace analysis is initiated
  uses identical launch configuration to that used for measurement

(i.e., the same allocated compute resources)

July 09, 2014 Slide 106

BT-MZ summary measurement
Run the application using the Scalasca measurement collection & analysis

nexus prefixed to launch command

Creates experiment directory ./scorep_bt-mz_W_4x4_sum

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum
% OMP_NUM_THREADS=4 scan mpiexec –np 4 ./bt-mz_W.4
S=C=A=N: Scalasca 2.0 runtime summarization
S=C=A=N: ./scorep_bt-mz_W_4x4_sum experiment archive
S=C=A=N: Thu Sep 13 18:05:17 2012: Collect start
mpiexec –np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 8 x 8
 Iterations: 200 dt: 0.000300
 Number of active processes: 4

 [... More application output ...]

S=C=A=N: Thu Sep 13 18:05:39 2012: Collect done (status=0) 22s
S=C=A=N: ./scorep_bt-mz_W_4x4_sum complete.

July 09, 2014 Slide 107

BT-MZ summary analysis report examination

Score summary analysis report

Post-processing and interactive exploration with CUBE

The post-processing derives additional metrics and generates
a structured metric hierarchy

% square scorep_bt-mz_W_4x4_sum
INFO: Displaying ./scorep_bt-mz_W_4x4_sum/summary.cubex...

 [GUI showing summary analysis report]

% square -s scorep_bt-mz_W_4x4_sum
INFO: Post-processing runtime summarization result...
INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score

July 09, 2014 Slide 108

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools

Score-P
Scalasca
CUBE
Vampir
TAU

  Use cases
  Summary

July 09, 2014 Slide 109

CUBE is available at http://www.scalasca.org/,
get support via scalasca@fz-juelich.de

July 09, 2014 Slide 110

CUBE

Parallel program analysis report exploration tools
  Libraries for XML report reading & writing
  Algebra utilities for report processing
  GUI for interactive analysis exploration

  requires Qt4
Originally developed as part of Scalasca toolset
Now available as a separate component

  Can be installed independently of Score-P, e.g.,
on laptop or desktop

  Latest release: CUBE 4.2.3 (June 2014)

July 09, 2014 Slide 111

Analysis presentation and exploration

Representation of values (severity matrix)
on three hierarchical axes
  Performance property (metric)
  Call path (program location)
  System location (process/thread)

Three coupled tree browsers

CUBE displays severities
  As value: for precise comparison
  As colour: for easy identification of hotspots
  Inclusive value when closed & exclusive value when expanded
  Customizable via display modes

Call
path

P
ro

pe
rty

Location

July 09, 2014 Slide 112

Analysis presentation

How is it
distributed across

the processes/threads?

What kind of
performance

metric?

Where is it in the
source code?

In what context?

July 09, 2014 Slide 113

Analysis report exploration (opening view)

July 09, 2014 Slide 114

Metric selection

Selecting the “Time” metric
shows total execution time

July 09, 2014 Slide 115

Expanding the system tree

Distribution of
selected metric
for call path by
process/thread

July 09, 2014 Slide 116

Selecting a call path

Selection updates
metric values shown
in columns to right

July 09, 2014 Slide 117

Source-code view via context menu

Right-click opens
context menu

July 09, 2014 Slide 118

Source-code view

July 09, 2014 Slide 119

Flat profile view

Select flat view tab,
expand all nodes,
and sort by value

July 09, 2014 Slide 120

Box plot view

Box plot shows distribution
across the system; with min/

max/avg/median/quartiles

July 09, 2014 Slide 121

Alternative display modes

Data can be
shown in various

percentage modes

July 09, 2014 Slide 122

Important display modes

Absolute
  Absolute value shown in seconds/bytes/counts

Selection percent
  Value shown as percentage w.r.t. the selected node

“on the left“ (metric/call path)

Peer percent (system tree only)
  Value shown as percentage relative to the maximum

peer value

July 09, 2014 Slide 123

Multiple selection

Select multiple
nodes with
Ctrl-click

July 09, 2014 Slide 124

Context-sensitive help

Context-sensitive
help available for

all GUI items

July 09, 2014 Slide 125

CUBE algebra utilities

Calculating difference of two reports

Additional utilities for merging, calculating mean, etc.
  Default output of cube_utility is a new report utility.cubex

Further utilities for report scoring & statistics

Run utility with “-h” (or no arguments) for brief usage info

% cube_diff scorep_bt-mz_W_4x4_sum/profile.cubex cut.cubex
Writing diff.cubex... done.

July 09, 2014 Slide 126

Cube - Demo

July 09, 2014 Slide 127

Analyzing a performance issue with Scalasca/
CUBE

July 09, 2014 Slide 128

Post-processed trace analysis report

Additional trace-based
metrics in metric hierarchy

July 09, 2014 Slide 129

Online metric description

Access online metric
description via context

menu

July 09, 2014 Slide 130

Online metric description

July 09, 2014 Slide 131

Pattern instance statistics

Access pattern instance
statistics via context menu

Click to get
statistics details

July 09, 2014 Slide 132

Connect to Vampir trace browser

To investigate most severe
pattern instances, connect

to a trace browser… …and select trace file from
the experiment directory

July 09, 2014 Slide 133

Show most severe pattern instances

Select “Max severity in trace
browser” from context menu
of call paths marked with a

red frame

July 09, 2014 Slide 134

Investigate most severe instance in Vampir

Vampir will automatically
zoom to the worst

instance in multiple steps
(i.e., undo zoom provides

more context)

July 09, 2014 Slide 135

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools

Score-P
Scalasca
CUBE
Vampir
TAU

  Use cases
  Summary

July 09, 2014 Slide 136

Vampir is available at http://www.vampir.eu,
get support via vampirsupport@zih.tu-dresden.de

July 09, 2014 Slide 137

Objectives

Visualization of dynamics of complex parallel processes
Requires two components

  Monitor/Collector (Score-P)
  Charts/Browser (Vampir)

Typical questions that Vampir helps to answer:
  What happens in my application execution during a given time in a

given process or thread?
  How do the communication patterns of my application execute on a

real system?
  Are there any imbalances in computation, I/O or memory usage and

how do they affect the parallel execution of my application?

July 09, 2014 Slide 138

Event trace visualization with Vampir

Alternative and supplement to automatic analysis
  Show dynamic run-time behavior graphically at any level of detail
  Provide statistics and performance metrics

Timeline charts
  Show application activities and

communication along a time axis

Summary charts
  Provide quantitative results for

the currently selected time
interval

July 09, 2014 Slide 139

Vampir – Visualization Modes (1)

Directly on front end or local machine

% vampir

Score-P Trace
File

(OTF2)

Vampir 8 CPU CPU

CPU CPU CPU CPU

CPU CPU

Multi-Core
Program

Thread parallel Small/Medium sized trace

July 09, 2014 Slide 140

Vampir – Visualization Modes (2)

On local machine with remote VampirServer

Score-P

Vampir 8

Trace
File

(OTF2)

VampirServer

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

Large Trace File
(stays on remote machine)

MPI parallel application

LAN/WAN

% vampirserver start –n 12 % vampir

July 09, 2014 Slide 141

Usage order of the Vampir Performance Analysis
Toolset

1.  Instrument your application with Score-P
2.  Run your application with an appropriate test set
3.  Analyze your trace file with Vampir

  Small trace files can be analyzed on your local workstation
1.  Start your local Vampir
2.  Load trace file from your local disk

  Large trace files should be stored on the HPC file system
1.  Start VampirServer on your HPC system
2.  Start your local Vampir
3.  Connect local Vampir with the VampirServer on the HPC system
4.  Load trace file from the HPC file system

July 09, 2014 Slide 142

The main displays of Vampir

Timeline Charts:
  Master Timeline

  Process Timeline

  Counter Data Timeline

  Performance Radar

Summary Charts:

  Function Summary

  Message Summary

  Process Summary

  Communication Matrix View

July 09, 2014 Slide 143

Vampir: example visualization

% vampir scorep_bt-mz_B_4x4_trace

Master Timeline

Navigation Toolbar

Function Summary

Function Legend

July 09, 2014 Slide 144

Vampir: example visualization

Master Timeline

Detailed information about
functions, communication

and synchronization events
for collection of processes.

July 09, 2014 Slide 145

Vampir: example visualization

Detailed information about
different levels of function
calls in a stacked bar chart
for an individual process.

Process Timeline

July 09, 2014 Slide 146

Vampir: example visualization

Typical program phases

Initialisation Phase Computation Phase

July 09, 2014 Slide 147

Vampir: example visualization

Detailed counter
information over time for

an individual process.

Counter Data Timeline

July 09, 2014 Slide 148

Vampir: example visualization

Performance Radar

Detailed counter
information over time for
a collection of processes.

July 09, 2014 Slide 149

Vampir: example visualization

Zoom in: Inititialisation Phase

Context View:
Detailed information about

function “initialize_”.

July 09, 2014 Slide 150

Vampir: example visualization

Feature: Find Function

Execution of function
“initialize_” results in

higher page fault
rates.

July 09, 2014 Slide 151

Vampir: example visualization

Computation Phase

Computation phase
results in higher

floating point
operations.

July 09, 2014 Slide 152

Vampir: example visualization

 MPI communication
 results in lower
 floating point
 operations.

Zoom in: Computation Phase

July 09, 2014 Slide 153

Vampir: example visualization

Zoom in: Finalisation Phase

“Early reduce”
bottleneck.

July 09, 2014 Slide 154

Vampir: example visualization

Process Summary

Function Summary:
Overview of the

accumulated information
across all functions and for
a collection of processes.

Process Summary:
Overview of the

accumulated information
across all functions and for

every process independently.

July 09, 2014 Slide 155

Vampir: example visualization

Process Summary

Find groups of similar
processes and

threads by using
summarized function

information.

July 09, 2014 Slide 156

Vampir: example visualization

Communication matrix

July 09, 2014 Slide 157

Vampir - Demo

July 09, 2014 Slide 158

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools

Score-P
Scalasca
CUBE
Vampir
TAU

  Use cases
  Summary

July 09, 2014 Slide 159

TAU is available at http://tau.uoregon.edu,
Free download, open source, BSD license

July 09, 2014 Slide 160

TAU Performance System®

Parallel performance framework and toolkit
  Supports all HPC platforms, compilers, runtime system
  Provides portable instrumentation, measurement, analysis

July 09, 2014 Slide 161

TAU Performance System®

Instrumentation
  Fortran, C++, C, UPC, Java, Python, Chapel
  Automatic instrumentation

Measurement and analysis support
  MPI, OpenSHMEM, ARMCI, PGAS, DMAPP

  pthreads, OpenMP, hybrid, other thread models
  GPU, CUDA, OpenCL, OpenACC
  Parallel profiling and tracing
  Use of Score-P for native OTF2 and CUBEX generation
  Efficient callpath proflles and trace generation using Score-P

Analysis
  Parallel profile analysis (ParaProf), data mining (PerfExplorer)
  Performance database technology (PerfDMF, TAUdb)
  3D profile browser

July 09, 2014 Slide 162

TAU Analysis

July 09, 2014 Slide 163

ParaProf Profile Analysis Framework

July 09, 2014 Slide 164

ParaProf: 3D Communication Matrix

July 09, 2014 Slide 165

ParaProf: Topology View 3D Torus (IBM BG/P)

July 09, 2014 Slide 166

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools
  Use cases

Load imbalances (OpenMP)
GemsFDTD case study
COSMO case study

  Summary

July 09, 2014 Slide 167

Sparse matrix vector multiplication

foreach row r in A
 y[r.x] = 0
 foreach non-zero element e in row
 y[r.x] += e.value * x[e.y]

July 09, 2014 Slide 168

Sparse matrix vector multiplication

Naïve OpenMP Algorithm:

Distributes the rows of A evenly across the threads in the
parallel region

The distribution of the non-zero elements may influence the
load balance in the parallel application

#pragma omp parallel for
foreach row r in A
 y[r.x] = 0
 foreach non-zero element e in row
 y[r.x] += e.value * x[e.y]

July 09, 2014 Slide 169

Time spent in OpenMP barriers

These threads spent up to
20% of there running time

in the barrier

July 09, 2014 Slide 170

Computational imbalance

Master thread does 66% of
the work

July 09, 2014 Slide 171

Sparse matrix vector multiplication

Improved OpenMP Algorithm

Distributes the rows of A dynamically across the threads in the
parallel region

#pragma omp parallel for schedule(dynamic,1000)
foreach row r in A
 y[r.x] = 0
 foreach non-zero element e in row
 y[r.x] += e.value * x[e.y]

July 09, 2014 Slide 172

Time spent in OpenMP barriers

All threads spent similar
time in the barrier

July 09, 2014 Slide 173

Computational imbalance

Threads do nearly equal
work

July 09, 2014 Slide 174

Time spent in OpenMP barriers

Improved runtime

Less time in
OpenMP barrier

July 09, 2014 Slide 175

Computational imbalance

Great imbalance for time
spent in computational

code

Great imbalance for time
spent in computational

code

July 09, 2014 Slide 176

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools
  Use cases

Load imbalances (OpenMP)
GemsFDTD case study
COSMO case study

  Summary

July 09, 2014 Slide 177

GemsFDTD case study
Computational electromagnetics solver

  originates from KTH General ElectroMagnetics Solvers project
  finite-difference time-domain method for Maxwell equations

MPI parallel versions in SPEC MPI2007 benchmark suite

  original v1.1 (113.GemsFDTD) “medium” size
  revised v2.0 (145.lGemsFDTD) “large” size
  built with PGI 9.0.4 Fortran90 compiler (21k lines of code)

  typical benchmark optimization: -fastsse -O3 -Mipa=fast,inline

Results for Cray XT4@EPCC (“HECToR”)

  using “ltrain” dataset from v2.0 benchmark (50 timesteps)
  default Scalasca instrumentation for measurements

  9 of 90 application user-level source routines specified in filter determined
by scoring initial summary experiment

July 09, 2014 Slide 178

GemsFDTD v1 scalability on Cray XT4

•  Solver iterations appear to scale very reasonably

•  Execution time increases exponentially
•  Due to very expensive initialization

•  Scalability of the initial benchmark version (v1) was disappointing
 and prevented execution at larger scales.
•  Motivated comprehensive performance analysis to isolate
 scalability problems, and ultimately re-engineering to resolve them.

['ltrain' runs
on CrayXT4
HECToR]

GemsFDTD v1 scalability on Cray XT4

July 09, 2014 Slide 179

Time for initialization broadcasts (v1.1)

Time for initialization broadcasts (v1.1)

•  Over 92% of total time for broadcasts
 distributing parameters & working set

•  37,464 broadcasts in total
(most of them only 4 byes)
from rank 0

July 09, 2014 Slide 180

Computation time in solver transforms (v1.1)

Computation time in solver transforms (v1.1)

•  Each solver component routine has
a different imbalance, in severe cases
leaving some processes without work

July 09, 2014 Slide 181

GemsFDTD case study

Analysis results
  Initialization dominated by numerous broadcasts
  Expensive serial multi-block partition by rank 0
  Computational imbalance and blocking communication in solver

  Late sender

Reengineering of the code
  Aggregation of multiple data values into larger messages
  Postpones allocations until all block information in broadcast
  Using nonblocking communication to exchange blocks
  Omitting idle states of 2 processes

July 09, 2014 Slide 182

GemsFDTD v1 & v2 scalability on Cray XT4

['ltrain' runs
on CrayXT4
HECToR]

GemsFDTD v1 & v2 scalability on Cray XT4

•  Performance & scalability of
 solver iterations also improved

•  Much better initialization time benefits entire code
•  but still relatively expensive compared to solver

July 09, 2014 Slide 183

Outline

  Introduction
  Code development
  Performance analysis and tuning

  Concepts and basics
  Selected performance issues
  Selected performance analysis tools
  Use cases

Load imbalances (OpenMP)
GemsFDTD case study
COSMO case study

  Summary

July 09, 2014 Slide 184

COSMO-7/XE6 case study
Regional climate and weather model

  Developed by Consortium for Small-scale Modeling (COSMO)
  DWD, MeteoSwiss and others

  Non-hydrostatic limited-area atmospheric model (6.6km grid)

MPI parallel version 4.12 (Jan-2011)
  Built with PGI 10.9 Fortran90 compiler (222k lines of code)

MeteoSwiss operational 24-hour forecast of 06-Dec-2010
  Western Europe 393x338x60 resolution, 1440 timesteps

Run with 984 processes on 'palu' Cray XE6 at CSCS
  28x35 compute grid + 4 dedicated I/O processes
  Used 41 Opteron compute nodes each with 24 cores
  Scalasca trace measurement with 19 of 178 routines filtered
  44GB trace written in 23s and analyzed in 82s

Courtesy of Oliver Fuhrer (MeteoSwiss) & CSCS

July 09, 2014 Slide 185

COSMO/XE6 physics computation time

Distribution of
compute time
for 2 cabinets
[gray=unused]

4 ranks 980–983
dedicated for I/O

56% of total time is local computation,
of which 21% is in organize_physics

July 09, 2014 Slide 186

COSMO/XE6 physics computation time

56% of total time is local computation,
of which 21% is in organize_physics

Application's 28x35
MPI Cartesian topology

July 09, 2014 Slide 187

COSMO/XE6 physics computation imbalance

Refinement of origin of time
executing local computation

July 09, 2014 Slide 188

COSMO/XE6 computational overload (geo)

Geographical origin of some
computational overload ...

COSMO-7

July 09, 2014 Slide 189

COSMO/XE6 computational overload (hydro)

… but 5x more overload
moves with cloud and rain
computations of snowstorm

July 09, 2014 Slide 190

COSMO/XE6 collective wait at N x N time

~5% of total time blocked
waiting in MPI_Allreduces

July 09, 2014 Slide 191

COSMO/XE6 late sender waiting time

10% of total time blocked in
Late Sender communication
in exchg_boundaries ...

July 09, 2014 Slide 192

COSMO/XE6 late sender communications

… however, most instances
of Late Senders for receives
in organize_dynamics

July 09, 2014 Slide 193

Outline

  Introduction
  Code development
  Performance analysis and tuning
  Summary

July 09, 2014 Slide 194

Summary

You’ve been introduced to a variety of tools, and had an
opportunity to try them with a prepared example code

  with guidance to apply and use the tools most effectively

Tools provide complementary capabilities
  computational kernel & processor analyses
  communication/synchronization analyses
  load-balance, scheduling, scaling, …

Tools are designed with various trade-offs
  general-purpose versus specialized
  platform-specific versus agnostic
  simple/basic versus complex/powerful

July 09, 2014 Slide 195

Tool selection

Which tools you use and when you use them likely to depend
on situation
  which are available on (or for) your computer system
  which support your programming paradigms and languages
  which you are familiar (comfortable) with using

also depends on the type of issue you have or suspect

Awareness of (potentially) available tools can help finding the
most appropriate tools

July 09, 2014 Slide 196

Workflow (getting started)

First ensure that the parallel application runs correctly
  No-one will care how quickly you can get invalid answers or produce

a directory full of corefiles
  Parallel debuggers help isolate known problems
  Correctness checking tools can help identify other issues
  (that might not cause problems right now, but will eventually)

  e.g., race conditions, invalid/non-compliant usage

Generally valuable to start with an overview of execution
performance
  Fraction of time spent in computation vs comm/synch vs I/O
  Which sections of the application/library code are most costly

and how it changes with scale or different configurations
  Processes vs threads, mappings, bindings

July 09, 2014 Slide 197

Workflow (communication/synchronization)

Communication/synchronization issues generally apply to
every computer system (to different extents) and typically
grow with the number of processes/threads
  Weak scaling: fixed computation per thread, and perhaps fixed

localities, but increasingly distributed
  Strong scaling: constant total computation, increasingly divided

amongst threads, while communication grows
  Collective communication (particularly of type “all-to-all”) result in

increasing data movement
  Synchronizations of larger groups are increasingly costly
  Load-balancing becomes increasingly challenging, and imbalances

increasingly expensive
  generally manifests as waiting time at following collective ops

July 09, 2014 Slide 198

Workflow (wasted waiting time)

Waiting times are difficult to determine in basic profiles
  Part of the time each process/thread spends in

communication &
synchronization operations may be wasted waiting time

  Need to correlate event times between processes/
threads
  Post-mortem event trace analysis avoids interference and

provides a complete history
  Scalasca automates trace analysis and ensures waiting times are

completely quantified
  Vampir allows interactive exploration and detailed examination of

reasons for inefficiencies

July 09, 2014 Slide 199

Workflow (core computation)

Effective computation within processors/cores is also vital
  Optimized libraries may already be available
  Optimization using compilers can also do a lot

  provided the code is clearly written and not too complex
  appropriate directives and other hints can also help

  Processor hardware counters can also provide insight
  although hardware-specific interpretation required

  Tools available from processor and system vendors help
navigate and interpret processor-specific performance
issues

July 09, 2014 Slide 200

Presented tools

Score-P
  community-developed instrumenter & measurement

libraries for parallel profiling and event tracing
Scalasca

  automated event-trace analysis
CUBE

  interactive parallel profile analyses
Vampir

  interactive event-trace visualizations and analyses
TAU

  comprehensive performance system

