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Motivation – Why going Parallel? 

H2O 
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Motivation – Why going Parallel? 

Fast growth of parallelism of HPC systems 
  Multi-core  
  CPUs 

Hardware limitations 
  CPU frequency 
  Cooling 
  Power consumption 
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Motivation – Why going Parallel? 

Simulations requirements are increasing 
  Scientific problem sizes become larger 
  Better accuracy/resolution required 
  New kinds of scientific problems arise 

Hardware limitations 
  CPU frequency 
  Cooling 
  Power consumption 

  Parallel Computing 
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Hardware Basics: von Neumann Architecture 

Simulations’ core requirements to hardware: 
  Read data 
  Perform instructions on data 
  Write data/results 

Memory 

Control 
Unit 

Arithmetic 
Logic 
Unit 

Input Output 

CPU 

What to do in parallel?  All (computation AND I/O) 
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Hardware Basics: Flynn’s Taxonomy 

Single Instruction Multiple Instructions 
Single Data SISD MISD 

Multiple data SIMD MIMD 

  SISD: Uniprocessor, Pentium 
  SIMD: SSE instruction of x86, vector processors 
  MISD: not common, used for fault tolerance, digital signal 

processing 
  MIMD: Multiprocessor architecture 

  Classification of computer architectures 
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Multiprocessor Architectures:  
Shared Memory 

  All CPUs share the same memory 
  Single address space 
  Uniform memory access (UMA) multiprocessor 
  Symmetric multiprocessor (SMP)  

Memory 

CPU CPU CPU CPU 
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Multiprocessor Architectures:  
Distributed Memory 

  Each CPU has its own memory and address space 
  Non-uniform memory access (NUMA) 
  Data exchange between memory of different CPUs  

  Via interconnect 
  Explicit data transfer necessary (message passing) 

Memory 

CPU 

Memory 

CPU 

Memory 

CPU 

Memory 

CPU 

Interconnection 
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Nowadays Multiprocessor Architectures:  
Hybrid Distributed-Shared Memory Architectures 

  SMP with up to 16 cores 
  Several SMP are combined in one compute node (CN) 

  Shared memory within one CN 
  CN are connected via a network 

  Distributed memory between different CNs 

Interconnection 

Memory 

CPU CPU 

Memory 

CPU CPU 

Memory 

CPU CPU 

Memory 

CPU CPU 
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Processes and Threads 

Process 
  Instance of the OS to execute a program 
  Executes one or multiple  threads of execution 

Thread 
  Smallest unit of processing 
  Sequence of instructions 

Threads can be created and destroyed within a process and  
  Share the address space of the parent process (heap 

and static global data) 
  Have a local stack 
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Multithreading 

Multithreading: 
  A process can execute several threads 
  Threads can be created and destroyed at run-time 
  Threads share heap and static global data but have their own stack 

and registers 

Example: Simultaneous multithreading (SMT) (Hardware MT) 
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Software: Programming Paradigms 

SPSD 
(single program single data) 

SPMD 
(single program multiple data) 

MPMD 
(multiple programs multiple data) 

tim
e 
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Parallel Programming Concepts 

Classification according to process interaction 
1.  Message passing 

  Parallel processes exchange data by passing messages 
  Examples: PVM, MPI 

2.  Shared memory 
  Parallel threads share a global address space 
  Examples: POSIX threads, OpenMP 

3.  Implicit 
  Process interaction is not visible to the programmer 
  Examples: PGAS (CAF, UPC), GA 
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Task/Channel Model 
Task 
A program, its local memory, and a collection of I/O ports. Tasks can 
communicate with each other via  channels. 

Channel 
A message queue which connects the output port of one task with the input 
port of another task. 

Primitive Task (ptask) 
The smallest logical unit of instructions an algorithm can be split in. 

Primitive task (ptasks) 

Communication channel 
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Foster‘s Design Methodology 

Problem 
Partitioning 

Mapping Agglomeration 

Communication 
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Partitioning 

Splitting the problem into smaller pieces 
  Data-centric approach (Domain decomposition) 

  Computation-centric approach 
a 

b 

c 

max 

min 

avg 

+ = α + = α 

⁞ ⁞ ⁞ 

ptask 

ptask 
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Partitioning 

Checklist for good partitioning schemes 

  The ratio tasks/number of cores should be at least 10:1 
  Avoid redundant storage of data 
  Try to have tasks of comparable size 
  The number of tasks should scale with the problem size 
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Communication 

Local Communication 
  A task needs data from a small number of other tasks 

Global Communication 
  A task needs data from all other tasks 

Communication is part of the parallel overhead, so check 
 Communication operations should be balanced among tasks 
 Minimize communication  
  Tasks can communicate concurrently 
  Tasks can compute concurrently 
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Agglomeration 

Simplify the program 
Increase locality 

1.  Grouping tasks together  elimination of communication 
2.  Grouping sending and receiving ptasks  less messages 

1. 2. 

Maintain scalability 
  Do not group too many tasks 
  Extreme: group everything  serial code! 
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Agglomeration 

Checklist for good agglomeration scheme 

  Increase locality  
 Check that replicated computations use less time than 

the communication they replace 
 Computation and communication per task is balanced 
 Number of tasks is an increasing function of the problem 

size 
 Number of tasks fits to target (HPC) architecture 
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Mapping 

Assigning tasks to cores – sometimes conflicting  goals 

Maximizing system utilization 

Minimizing inter-processor communication 

Considerations/checklist: 
 One task or multiple tasks per processor 
 Ratio tasks to processors 
 Static or dynamic allocation of tasks to processors 
 Hybrid programming approach? 



July 9, 2014 Slide 28 

Outline 

  Introduction 
  Parallel Algorithms – an Example for a Design Strategy 
  Message-Passing Interface – Overview 

  Introduction and History 
  Basic concepts and terms 
  General usage 

  MPI – Selected Topics and Best Practices 
   



July 9, 2014 Slide 29 

Introduction – What is MPI? 

MPI (Message-Passing Interface)  

  Industry standard for a message-passing programming model 
  Provides specifications 
  Implemented as a library with language bindings for Fortran and C 
  Portable across different computer architectures 

  Purpose: provision of a means for communication between processes 
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Brief History 

<1992  Several message-passing libraries were developed  
  PVM, P4, LAM … 

1992  SC92: Several developers for message-passing 
libraries agreed to develop a standard for message passing 

1994  MPI-1 standard published 
1997  Development of MPI-2 standard started 
2008  MPI-2.1 
2009  MPI-2.2 
2012  MPI-3.0, current version of the MPI standard 
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MPI Terminology – Basics  

Context 
A property that allows the partitioning of the communication space  

Group 
An ordered set of process identifiers (henceforth: processes) 

Task 
An instance, sub-program or process of an MPI program 

Communicator 
Scope for communication operations within or between groups (intra-communicator 
or inter-communicator). Combines the concepts of group and context.  

Rank 
A unique number assigned to each task of an MPI program within a group (start at 0) 
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Task 

MPI Terminology – Communicators, Groups, Context 

Intra-communicator Inter-communicator 

1 

2 0 

3 

0 Rank 

Group 

Communicator 

Communication in context A 

Communication in context B 

1 

2 0 

3 
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MPI Terminology – Data Types 

  Basic data types for Fortran and C are different 
  Examples: 

Basic Data Types 
Data types which are defined within the MPI standard 

Derived Data Types 
Data types which are constructed from basic (or derived) data types 

Fortran type MPI basic type 
INTEGER MPI_INTEGER 
REAL MPI_REAL 
CHARACTER MPI_CHARACTE

R 

C type MPI basic type 
signed int MPI_INT 
float MPI_FLOAT 
char MPI_CHAR 
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MPI Terminology – Messages  

  Packet of data: 
  An array of elements of an MPI data type (basic or derived data type) 
  Described by 

  Position in memory (address) 
  Number of elements 
  MPI data type 

  Information for sending and receiving messages 
  Source and destination process (ranks) 
  Source and destination location  
  Source and destination data type 
  Source and destination data size 

Message 
A packet of data which needs to be exchanged between processes 

5 
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MPI Terminology – Properties of Procedures (I) 

Examples 
  Blocking 

  Nonblocking 

Blocking 
A procedure is blocking if return from the procedure indicates that the user 
is allowed to reuse resources specified in the call to the procedure. 

Nonblocking 
If a procedure is nonblocking it will return as soon as possible from to the 
calling process. However, the user is not allowed to reuse resources 
specified in the call to the procedure before the communication has been 
completed by an appropriate call at the calling process. 
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MPI terminology – Properties of procedures (II) 

Collective 
A procedure is collective if all processes in a group need to invoke the 
procedure 

Synchronous 
A synchronized operation will complete successfully only if the (required) 
matching operation has started (send – receive). 

Buffered (Asynchronous) 
A buffered operation may complete successfully before a (required) 
matching operation has started (send – receive). 
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(Non-)Blocking – (A)Synchronous  

(Non)-Blocking 
  Statement about reusability of message buffer 

(A)Synchronous 
  Statement about matching communication call 

Example 
  Blocking, synchronous sending: 

  Will return from call when buffer can be reused 
  After return receiving has started 

  Blocking, asynchronous sending: 
  Will return from call when buffer can be reused 
  After return, receiving has not started necessarily,  

message may be buffered internally 
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The MPI infrastructure – Linking  

Program must be linked against an MPI library 
  Usually done using compiler wrappers 

 Names of these wrappers are not standardized! The prefix 
mpi is very common, however, other prefixes and names are 

possible, e.g. mpcc for the IBM XL C compiler on AIX. 

mpicc myprog.c –o myprog  
mpiCC myprog.cc –o myprog 

mpif90 myprog.f90 –o myprog  
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The MPI infrastructure – Launching applications 

Program must be started with the MPI start-up mechanism 

mpirun [options] my_application.exe 
mpiexec [options] my_application.exe 

Names of these start-up mechanisms are not standardized! 
The above commands are very common, however, other 
mechanisms are possible, e.g. poe on AIX or runjob on  

Blue Gene/Q (e.g. JUQUEEN). 
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Language bindings 

Language bindings for 
  Fortran (Fortran77, Fortran90, Fortran2008 compatible) 
  ISO C 

Definitions included using header files 

#include <mpi.h> 

For Fortran the Fotran77/Fortran90 bindings are used 
throughout this talk 
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Nomenclature of MPI functions 

Generic format of MPI functions 

Never ever forget the ierror parameter in Fortran calls 
because this may lead to unpredictable behavior! 

MPI Namespace: 
MPI_ and PMPI_ prefixes must not be used for user-defined 

functions or variables since they are used by MPI! 

 error = MPI_Function(parameter,...); 

 call MPI_FUNCTION(parameter,...,ierror) 
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Example: initialization and finalization of MPI 

 int MPI_Init(int *argc, char ***argv); 

 MPI_INIT(IERROR) 
   INTEGER :: IERROR 

 int MPI_Finalize(void); 

 MPI_FINALIZE(IERROR) 
   INTEGER :: IERROR 
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Example: getting total number of tasks 

 int MPI_Comm_size(MPI_Comm comm, int *size) 

 MPI_COMM_SIZE(COMM, SIZE, IERROR) 
   INTEGER :: COMM, SIZE, IERROR 

… 
ierror = MPI_Comm_size(MPI_COMM_WORLD, &size); 
… 

… 
call MPI_Comm_size(MPI_COMM_WORLD, size, ierror) 
… 
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General performance considerations – I  

Communication protocols 
  Rendezvous protocol 

 Optimized for high bandwidth 
  Needs an initial handshake between involved tasks 
 high latency 

  Eager protocol 
  Low latency but low bandwidth 
  Useful for many small messages 

  Which protocol is used is determined by the eager limit 
(message size in bytes > eager limit  rendezvous) 

  Check environment variables! 
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General performance considerations – II  

Communication overhead 
Transfer time = latency + message length / bandwidth 

  Latency: Startup for message handling 
  Bandwidth: Transfer of bytes 

  For n messages  
Transfer time = n*latency + total message length /         
bandwidth 

  Try to avoid communication 
  Send few big messages instead of many small ones 
  Chose the appropriate protocol 
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General hints and recommendations 

Avoid communication if possible (usually) 
  No communication is the fastest communication 

Use as few resources as possible 
  Keeps small memory/communication footprint 

Provide as much information to MPI as possible 
  Allows MPI to choose best way of delivering messages 
  Allows MPI to optimize/reorder communication 

1 

2 

3 

Give MPI the freedom to optimize 
  Let MPI choose best way of communication 

4 
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Common mistakes 

Wrong API usage 
  Missing ierror argument in Fortran 
  Collective routines not called on all ranks of com 

Wrong variable declarations 
  Using INTEGER where MPI_OFFSET_KIND or 

MPI_ADDRESS_KIND is needed 
  status variable not declared with dimension 

MPI_STATUS_SIZE (Fortran) 
Nonblocking communication 

  Reusing buffers before it is save to do so 
  Missing MPI_Wait[…] 
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Point-to-point communication 

  Communication between two processes 
!  Note: A process can send messages to itself ! 

  A source process sends a message to a destination 
process by a call to an MPI send routine 

  A destination process needs to post a receive by a call 
to an MPI receive routine 

  The destination process is specified by its rank in the 
communicator, e.g. MPI_COMM_WORLD 

  Every message sent with a point-to-point call, needs to 
be matched by a receive. 
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Parts of messages 
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time 

0 

1 

Blocking Communication 

Computation interrupted by communication 

Computation 

Communication 
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Sending messages 

 int MPI_Send(void *buf, int count, MPI_Datatype datatype, 
              int dest, int tag, MPI_Comm comm) 

 MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR) 
   <type>  :: BUF(*) 
   INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, IERROR 
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Receiving messages 

 int MPI_Recv(void *buf, int count, MPI_Datatype datatype, 
              int source, int tag, MPI_Comm comm,     
              MPI_Status *status) 

 MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, 
          IERROR) 
   <type>  :: BUF(*) 
   INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM,   
              STATUS(MPI_STATUS_SIZE), IERROR 
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Send modes 
Synchronous send: MPI_Ssend 
•  Only completes when the receive has started 

Buffered send: MPI_Bsend 

Standard send: MPI_Send 
•  Either synchronous or buffered 
•  Uses an internal buffer if buffered 

Ready send: MPI_Rsend 
•  Always completes (unless an error occurs) irrespective of whether a 

receive has been posted or not 
•  May be started only if the matching receive is already posted 
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MPI_Send 

  Depends on the MPI implementation 
  Do not assume either case: 

  It can buffer  
On the sender side 
On the receiver side 

  It can wait for the matching receive to start 

Standard send: MPI_Send 
•   Either synchronous or buffered 
•   Uses an internal buffer if buffered 
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MPI_Rsend 

  User’s responsibility for writing a correct program 
  Error-prone, use only if absolutely necessary and you 

really know what you are doing! 

Ready send: MPI_Rsend 
•  Always completes (unless an error occurs) irrespective of whether a 

receive has been posted or not 
•  May be started only if the matching receive is already posted 
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Pitfall 1 – Blocking point-to-point communication 

1 

2 

0 

3 

… 
Call MPI_Ssend(…,dest=my_right_neighbor,…) 
Call MPI_Recv(…,source=my_left_neighbor,…) 
… 
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Pitfall 2 – Blocking point-to-point communication 

1 0 

if (myrank == 0) { 
  ierr = MPI_Send(…,dest=1,…) 
  ierr = MPI_Recv(…,source=1,…) 
} 
else { 
  ierr = MPI_Send(…,dest=0,…) 
  ierr = MPI_Recv(…,source=0,…) 
} 
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Pitfall 3 – Blocking point-to-point communication 

  Will fill-up message and/or envelop 
buffers 
 Performance penalty 
  Try to combine messages 
  Use  collective communication 
  Posting receives before sends 

reduces buffer space 

if (my_rank != 0){ 
  for (i=1;i<=100000;i++){ 
    ierr = MPI_Send(…,dest=0,…) 
  } 
} 
else { 
   receive messages 
} 

0 

1 

2 

3 

4 
5 

6 
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Pitfall 4 – Blocking point-to-point communication 

  Usage of synchronized sends might 
lead to serialization 

  Use buffered send or  nonblocking 
send/receive 

if (my_rank == 0) then 
  call MPI_Ssend(…,dest=1,…) 
else if (myrank == 1) then 
  call MPI_Recv(…,source=0,…) 
  call MPI_Ssend(…,dest=2,…) 
else if (myranks == 2) then 
  call MPI_Recv(…,source=1,…) 
  call MPI_Ssend(…,dest=3,…) 
else if (myrank == 3) then 
  call MPI_Recv(…,source=2,…) 
endif 

1 

2 

0 

3 

0 1 

2 

3 

1 

2 
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Pitfall 5 – Blocking point-to-point communication 

  Sender waits for receiver to call 
corresponding receive operation 

  Performance penalty 
  Use nonblocking calls 

0 1 

  Receiver waits for sender to call 
corresponding send operation 

  Performance penalty 
  Use nonblocking calls 

Example: 
 Communication between task 0 and 1 
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Blocking point-to-point – Recommendations 

2 

4 3 
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Nonblocking Communication 

Solution for many pitfalls in blocking communication 

0 

1 

time 

Computation 

Communication 

 

 

 

 

 

 

 Initialization of communication 
 Attending other work/test for completion  
 Completion of communication 



July 9, 2014 Slide 69 

Phase  – General 
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Phase  – Communication modes 
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Phase  – Nonblocking send 

 int MPI_Isend(void *buf, int count, MPI_Datatype  
               datatype, int dest, int tag, MPI_Comm comm,  
               MPI_Request *request) 

 MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,  
           IERROR) 
   <type>  :: BUF(*) 
   INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR 
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Phase  – Nonblocking receive 

 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, 
               int source, int tag, MPI_Comm comm, 
               MPI_Request *request) 

 MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,   
           REQUEST, IERROR) 
   <type>  :: BUF(*) 
   INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR 
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Phase  – Test  

 int MPI_Test(MPI_Request *request, int *flag,  
              MPI_Status *status) 

 MPI_TEST(REQUEST, STATUS, FLAG, IERROR) 
   LOGICAL :: FLAG 
   INTEGER :: REQUEST, STATUS, IERROR 
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Phase  – Wait 

 int MPI_Wait(MPI_Request *request, MPI_Status *status) 

 MPI_WAIT(REQUEST, STATUS, IERROR) 
   INTEGER :: REQUEST, STATUS, IERROR 
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Pitfall – Not truly nonblocking commnication 

0 

1 

time 

 

 

 

 

 

 

 Communication may not be truly asynchronous! 
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Pitfall – Not truly nonblocking commnication 

Usually nonblocking communication is used to 
  Avoid deadlocks 
  Avoid idle times to wait for receiver or sender 

Therefore 
  Use nonblocking routines for these cases 
  Do not spend too much time in this 
  Check system documentation (environment variables) 
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Pitfall – Environment settings 

On some systems special environment variables must be set 
to benefit from nonblocking communication 

  One-sided or nonblocking point-to-point communication 
  Blue Gene/P 

export DCMF_INTERRUPT=1 
  Blue Gene/Q 

export PAMID_ASYNC_PROGRESS=1 

Check information for your system! 
Also check other environment settings on the system! 



July 9, 2014 Slide 79 

Pitfall – Remember the communication protocol 

MPI usually switches protocols depending on message size 
  Large messages  rendezvous protocol 
  Small messages  eager protocol 

Trade-off between latency and bandwidth 
  Rendezvous protocol might lead to time penalties if sender is 

blocked while waiting for receiver 
  Eager protocol might lead to time penalties when large 

messages are send with low bandwidth 

Check limit for rendezvous protocol and adjust it to your needs! 
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Outline 

  Introduction 
  Parallel Algorithms – an Example for a Design Strategy 
  Message-Passing Interface – Overview 
  MPI – Selected Topics and Best Practices 

  General Hints and Remarks 
  Point-to-Point Communication 
  Collective Communication 
  Derived Datatypes 
  MPI_Info Object 
  One-sided Communication 
   



July 9, 2014 Slide 81 

Characteristics of collective communication 

  Collective action over a communicator. 
 All processes of the communicator must communicate, 

i.e. all processes must call the collective routine. 
  Synchronization may or may not occur 
  Collective operations can be blocking or nonblocking 

(MPI3.0) 
  No tags are used 
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Collective communication – overview 
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Example: broadcast 

 int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, 
               int root, MPI_Comm comm) 

 MPI_BCAST(BUF, COUNT, DATATYPE, ROOT, COMM, IERROR) 
   <type>  :: BUF(*) 
   INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR 

Blocking 

 int MPI_Ibcast(void *buf, int count, MPI_Datatype datatype, 
               int root, MPI_Comm comm, MPI_Request *req) 

 MPI_IBCAST(BUF, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR) 
   <type>  :: BUF(*) 
   INTEGER :: COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR 

Nonblocking 
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Properties of nonblocking collective routines 

EXCEPTION: nonblocking collective operations cannot be 
matched with blocking collective operations 
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General hints for collective routines 
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Pitfall 1 – Collective communication 

Collective routines 
  ALL ranks of a communicator have to execute them 
  Do not mix P2P and collective routines! 

… 
if (my_rank == 0) 
{ 
  MPI_Bcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
} 
else 
{ 
  MPI_Recv(&result, 1, MPI_DOUBLE, 0, MPI_ANY_TAG, MPI_COMM_WORLD, stat); 
} 
… 
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Pitfall 2 – Collective communication 

Do not mix blocking and nonblocking collectives! 

… 
if (my_rank == 0) 
{ 
  MPI_Bcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
} 
else 
{ 
  MPI_Ibcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD, &request); 
} 
… 
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Pitfall 3 – Collective communication 

Blocking collective  
  Operations must be executed in the same order on all 

participating tasks 
  Otherwise a deadlock will occur 

… 
if (my_rank == 0) 
{ 
  MPI_Bcast(&result1, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
  MPI_Bcast(&result2, 1, MPI_DOUBLE, 1, MPI_COMM_WORLD); 
} 
else 
{ 
 MPI_Bcast(&result2, 1, MPI_DOUBLE, 1, MPI_COMM_WORLD); 
 MPI_Bcast(&result1, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
} 
… 
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Motivation 

With MPI communication calls only multiple consecutive 
elements of the same type can be sent 

Buffers may be non-contiguous in memory 
  Sending only the real/imaginary part of a buffer of 

complex doubles 
  Sending sub-blocks of matrices 

Buffers may be of mixed type 
  User defined data structures 

struct buff_layout { 
  int i[4]; 
  double d[5]; 
} buffer; 
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Solutions without MPI derived datatypes 

Non-contiguous data of a single type 
  Consecutive MPI calls to send and receive each element 

in turn 
  Additional latency costs due to multiple calls 

  Copy data to a single buffer before sending it 
  Additional latency costs due to memory copy 

Contiguous data of mixed types 
  Consecutive MPI calls to send and receive each element 

in turn 
  Additional latency costs due to multiple calls 
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Derived datatypes 

  General MPI datatypes describe a buffer layout in 
memory by specifying 
  A sequence of basic datatypes 
  A sequence of integer (byte) displacements 

  Derived datatypes are derived from basic datatypes 
using constructors 

  MPI datatypes are referenced by an opaque handle 
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Creating a derived datatype: Type map 

Any derived datatype is defined by its type map 
  A list of basic datatypes 
  A list of displacements (positive, zero, or negative) 
  Any type matching is done by comparing the sequence 

of basic datatypes in the type maps 
General type map: 

Datatype Displacement 
datatype 0 displacement of datatype 0 
datatype 1 dispalcement of datatype 1 

… … 
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Example of a type map 

struct buff_layout { 
  int i[4]; 
  double d[5]; 
} buffer; 

0 4 8 12 32 16 24 40 48 

Datatype Displacement 

MPI_INT 0 

MPI_INT 4 

MPI_INT 8 

MPI_INT 12 

MPI_DOUBLE 16 

MPI_DOUBLE 24 

MPI_DOUBLE 32 

MPI_DOUBLE 40 

MPI_DOUBLE 48 
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Datatype constructors 

Use the simplest derived datatype 
that suits your needs. The more 

complex the datatype the slower is 
its handling. 
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Struct data 

 int MPI_Type_create_struct(int count, int *array_of_blocklengths, 
       MPI_Aint *array_of_displacements, MPI_Datatype *array_of_types, 
       MPI_Datatype *newtype) 

 MPI_TYPE_CREATE_STRUCT(COUNT, 
ARRAY_OF_BLOCKLENGTHS,ARRAY_OF_DISPLACEMENTS,          

                         ARRAY_OF_TYPES, NEWTYPE,IERROR) 
   INTEGER :: COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,  
              IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: ARRAY_OF_DISPLACEMENTS(*) 

array_of_blocklength(0)=4 

oldtypes MPI_INTEGER MPI_REAL 

newtype 

array_of_blocklength(1)=5 

array_of_displacement(0)=0 array_of_displacement(1)=16 

array_of_types(0)=MPI_INTEGER 
array_of_types(1)=MPI_REAL 
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Committing and freeing derived datatypes 

  Before it can be used in a communication, each derived datatype has to be 
committed 

 int MPI_Type_commit(MPI_Datatype *datatype) 

 MPI_TYPE_COMMIT(DATATYPE, IERROR) 
   INTEGER :: DATATYPE, IERROR 

 int MPI_Type_free(MPI_Datatype *datatype) 

 MPI_TYPE_FREE(DATATYPE, IERROR) 
   INTEGER :: DATATYPE, IERROR 

  Mark a datatype for deallocation 
  Datatype will be deallocated when all pending operations are finished 
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Example: exchanging velocity information   

For each point there are 
  3 coordinates 
  3 color values (r, g, b, ϵ [0, 255]) 

struct pointstrct 
{ 
  int    r; 
  int    g; 
  int    b; 
  double x; 
  double y; 
  double z; 
} point; 

type pointstrct 
  integer   :: r 
  integer   :: g 
  integer   :: b 
  real*8    :: x 
  real*8    :: y 
  real*8    :: z 
end type pointstrct 
type (pointstrct) :: point 
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Pitfall 1 – Derived datatypes for structs/types 

struct pointstrct 
{ 
  int    r; 
  int    g; 
  int    b; 
  double x; 
  double y; 
  double z; 
} point; 

array_of_blocklength(0)=3 

oldtypes MPI_INTEGER MPI_REAL 

newtype 

array_of_blocklength(1)=5 

array_of_displacement(0)=0 array_of_displacement(1)=12 

array_of_types(0)=MPI_INTEGER 
array_of_types(1)=MPI_REAL 

 int MPI_Type_create_struct(int count,  
                      int *array_of_blocklengths, 
                      MPI_Aint *array_of_displacements,        
                      MPI_Datatype *array_of_types, 
                      MPI_Datatype *newtype) 
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Pitfall 1 – Derived datatypes for structs/types 

struct pointstrct 
{ 
  int    r; 
  int    g; 
  int    b; 
  double x; 
  double y; 
  double z; 
} point; 

0 4 8 12 32 16 24 40 48 

addrint addrdbl 
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Pitfall 1 – Derived datatypes for structs/types 

  Finding addresses and relative displacements of 
memory blocks 

 int MPI_Get_address(void *location, MPI_Aint *address) 

MPI_Aint addr_block_1, addr_block_2; 
MPI_Aint displacement = 0; 

MPI_Get_address(&block_1, &addr_block_1); 
MPI_Get_address(&block_2, &addr_block_2); 

displacement = addr_block_2 - addr_block_1; 

 MPI_GET_ADDRESS(LOCATION,ADDRESS,IERROR) 
   <type>  :: LOCATION(*) 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: ADDRESS 
   INTEGER :: IERROR 
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Correct derived datatypes for structs (C) 

MPI_Get_address(&point,&addrbase); 
MPI_Get_address(&point.x,&addrdbl); 

displ[0] = 0; 
displ[1] = addrdbl – addrbase; 

type[0] = MPI_INT; 
type[1] = MPI_DOUBLE; 

length[0] = 3; 
length[1] = 3; 

MPI_Type_create_struct(2,length,displ,type,&mypoint); 
MPI_Type_commit(&mypoint); 

struct pointstrct 
{ 
  int    r; 
  int    g; 
  int    b; 
  double x; 
  double y; 
  double z; 
} point; 
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Correct derived datatypes for types (FORTRAN) 

call MPI_Address(point,addrbase,ierror) 
call MPI_Address(point%x,addrdbl,ierror) 

displ(0) = 0 
displ(1) = addrdbl – addrbase 

type(0) = MPI_INTEGER 
type(1) = MPI_REAL8 

length(0) = 3 
length(1) = 3 

call MPI_Type_create_struct(2,length,displ,type,mypoint,ierror) 
call MPI_Type_commit(mypoint,ierror) 

type pointvel 
  integer   :: r 
  integer   :: g 
  integer   :: b 
  real*8    :: x 
  real*8    :: y 
  real*8    :: z 
end type pointvel 
type (pointstrct) :: point 
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Pitfall 2 – Sending parts of structures 

Just want to send b and x of all elements 

struct pointstrct 
{ 
  int    r; 
  int    g; 
  int    b; 
  double x; 
  double y; 
  double z; 
} point[10]; 

MPI_Get_address(&point,&addrbase); 
MPI_Get_address(&point.b,&addrb); 
MPI_Get_address(&point.x,&addrdbl); 
displ[0] = addrb - addrbase; 
displ[1] = addrdbl – addrbase; 
type[0] = MPI_INT; 
type[1] = MPI_DOUBLE; 
length[0] = 1; 
length[1] = 1; 
MPI_Type_create_struct(2,length,displ,type,&newpoint); 
MPI_Type_commit(&newpoint); 

Wrong! 
(except for first Element) 

Memory: 

done: 
intended: 

0 4 8 12 32 16 24 
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Sending parts of structures 

MPI_Get_address(&point[0],&addrbase); 
MPI_Get_address(&point[0].b,&addrb) 
MPI_Get_address(&point[0].x,&addrx); 
MPI_Get_address(&point[1],&addrn); 
displ[0] = 0; 
displ[1] = addrdb – addrbase; 
displ[2] = addrdx – addrbase; 
displ[3] = addrdn – addrbase; 
type[0] = MPI_LB;     length[0] = 1; 
type[1] = MPI_INT;    length[0] = 1; 
type[2] = MPI_DOUBLE; length[0] = 1; 
type[3] = MPI_UB;     length[0] = 1; 

MPI_Type_create_struct(4,length,displ,type,&mypoint); 
MPI_Type_commit(&mypoint); 
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Sending parts of structures 

 int MPI_Type_create_resized(MPI_Datatype oldtype, 
                             MPI_Aint lb, MPI_Aint extent,  
                             MPI_Datatype* newtype) 

 MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE,  
                         IERROR) 
   INTEGER :: OLDTYPE, NEWTYPE, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: LB, EXTENT 
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Sending parts of structures 

[…] 
MPI_Get_address(&point[0],&addrbase); 
MPI_Get_address(&point[1],&addrn); 

lb = addrbase; 
extend = addrn – addrbase; 

MPI_Type_create_resized(newpoint,lb,extend,&npoint); 
MPI_Type_commit(&npoint); 
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3 
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Create and free MPI_Info objects 

  The created info objects contains no (key,value) pairs 

 int MPI_Info_create(MPI_Info info) 

 MPI_INFO_CREATE(INFO, IERROR) 
   INTERGER :: INFO, IERROR 

 int MPI_Info_free(MPI_Info info) 

 MPI_INFO_FREE(INFO, IERROR) 
   INTERGER :: INFO, IERROR 
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Set and delete (key,value) pairs 

 int MPI_Info_set(MPI_Info info, char *key, char *value) 

 MPI_INFO_SET(INFO, KEY, VALUE, IERROR) 
   CHARACTER(*) :: KEY, VALUE 
   INTERGER     :: INFO, IERROR 

 int MPI_Info_delete(MPI_Info info, char *key) 

 MPI_INFO_DELETE(INFO, KEY, IERROR) 
   CHARACTER(*) :: KEY    
   INTERGER     :: INFO, IERROR 
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Retrieve active (key,value) pairs of an info object 

 int MPI_Info_get_nkeys(MPI_Info info, int *nkeys) 

 MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR) 
   INTERGER     :: INFO, NKEYS, IERROR 

 int MPI_Info_get_nthkey(MPI_Info info, int n, char *key); 

 MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR) 
   CHARACTER(*):: KEY 
   INTERGER      :: INFO, N, IERROR 
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Retrieve active (key,value) pairs of an info object 

 int MPI_Info_get_valuelen(MPI_Info info, const char *key, 
                           int *valuelen, int *flag) 

 MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR) 
   CHARACTER (*) :: KEY 
   INTERGER      :: INFO, VALUELEN, IERROR 
   LOGICAL       :: FLAG 
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Retrieve active (key,value) pairs of an info object 

 int MPI_Info_get(MPI_Info info, char *key,  
                  int valuelen, char *value, int *flag) 

 MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR) 
   CHARACTER(*):: KEY, VALUE 
   INTERGER      :: INFO, VALUELEN, IERROR 
   LOGICAL       :: FLAG 
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Example: Info objects for MPI I/O 

Two possibilities 
1.  Pass info object when opening file 

  Information about file system properties 
  Hints for MPI about access to file 
  Information about buffering 

2.  Associate info object with open file 
  Same information can be passed 
  Some I/O properties cannot be changed if the file is 

already open  Information may be ignored 
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1. Associate info objects when opening a file 

 int MPI_File_open(MPI_Comm comm, char *filename, 
                   int amode, MPI_Info info, MPI_File *fh) 

 MPI_FILE_OPEN(COMM, FILENAME ,AMODE, INFO, FH, IERROR) 
   CHARACTER*(*) :: FILENAME 
   INTEGER       ::COMM,AMODE,INFO,FH,IERROR 
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2. Associate info objects with an open file 

  Info items that cannot be changed for an open file need to be set when 
opening the file 

  MPI implementation may choose to ignore the hints in this call 

 int MPI_File_set_info(MPI_File fh, MPI_Info info) 

 MPI_FILE_SET_INFO(FH, INFO, IERROR) 
   INTEGER     :: FH, INFO, IERROR 
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Example keys for MPI I/O MPI_Info objects 
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Pitfalls – MPI_Info objects 

Unknown keys 
  Which keys are supported depends on the MPI 

implementation 
  MPI may choose to ignore unsupported keys 

Values cannot become effective 
  Some values can only be changed in certain routines (e.g. in 

MPI I/O some values must be set when opening files) 

Check always which keys are available and  
whether they are active and set correctly! 
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Motivation 

Point-to-point and collective MPI routines  
  Sender needs to know which data to send and to which 

process 
  Receiver needs to wait for sender (cannot initiate 

transfer) 
Drawbacks for some communication patterns 

  Sending process might not know what to send or to 
which process to send 

  Receiving process needs to initiate transfer 
One-sided communication 

  RMA (Remote Memory Access) 
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Terminology 

Origin 
The process triggering the one-sided operation, specifying all needed 
parameters. 

Target 
The process providing access to its memory through a defined window. The 
target does not explicitly participate in the data transfer. 
Active target communication: Both origin and target process are involved 
in the communication. 
Passive target communication: Only the origin process(es) is (are) 
involved in the communication. 
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Terminology 

Access epoch ( Origin process) 
An access epoch is the time interval from the origin process’ start signal of 
data access to its end signal of data access on a window. 

Exposure epoch ( Target process) 
An exposure epoch is the time interval some defined data access is allowed 
on a window. It starts and ends with synchronizations calls on the target 
process (only for active target communication). 

Window 
A block of memory opened for remote access through MPI RMA operations. 
Its definition is collective on all processes using this window. Only 
designated targets have to specify a valid buffer, origins can use a special 
placeholder to obtain a handle without opening memory for remote access. 
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passive target communication 

active target communication 

exposure epoch 

access epoch 

Terminology – Overview  

… … … 

Task l Task m Task n 

sync 
sync 

lock 

access 
sync 

sync 

access 

unlock 

… 

lock 

access 

unlock 

… 

… 

local memory 

Create Window Create Window Create Window 

window 

Free Window Free Window Free Window 

origin tasks: l and n 
target task : m  
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Initialization – Window creation (I) 

 int MPI_Win_create(void *base, MPI_Aint *size,  
                    int disp_unit, MPI_Info info,  
                    MPI_Comm comm, MPI_Win *win) 

 MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, 
                IERROR) 
   <type>  :: BASE(*) 
   INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) SIZE 
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Initialization – Window creation (II) 

 int MPI_Win_allocate(MPI_Aint *size, int disp_unit, 
                      MPI_Info info, MPI_Comm comm, 
                      void *baseptr, MPI_Win *win) 

 MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR,  
                  WIN, IERROR) 
   INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR 
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Initialization – Window creation (III) 

 int MPI_Win_allocate_shared 
     (MPI_Aint *size, int disp_unit, MPI_Info info,  
      MPI_Comm comm, void *baseptr, MPI_Win *win) 

 MPI_WIN_ALLOCATE_SHARED 
      (SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR) 
   INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR 
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Get Address of other Tasks’ Memory Segments 

 int MPI_Win_shared_query 
     (MPI_Win win, int rank, MPI_Aint *size,  
      int *disp_unit, void *baseptr) 

 MPI_WIN_SHARED_QUERY 
      (WIN, RANK, SIZE, DISP_UNIT, BASEPTR, IERROR) 
   INTEGER :: WIN, RANK, DISP_UNIT, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR 
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Initialization – Window creation (IV) 

 int MPI_Win_create_dynamic (MPI_Info info, MPI_Comm comm,  
                             MPI_Win *win) 

 MPI_WIN_CREATE_DYNAMIC (INFO, COMM, WIN, IERROR) 
   INTEGER :: INFO, COMM, WIN, IERROR   
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Attaching Memory to a Dynamic Window 

 int MPI_Win_attach (MPI_Win win, void *base,  
                     MPI_Aint size) 

 MPI_WIN_ATTACH (WIN, BASE, SIZE, IERROR) 
   INTEGER :: WIN, IERROR   
   <type>  :: BASE(*) 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE 
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Detaching Memory to a Dynamic Window 

 int MPI_Win_detach (MPI_Win win, void *base) 

 MPI_WIN_DETACH (WIN, BASE, IERROR) 
   INTEGER :: WIN, IERROR   
   <type>  :: BASE(*) 
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MPI RMA operation put 

 int MPI_Put(void* origin_addr, int origin_count, 
             MPI_Datatype origin_type, int target_rank, 
             MPI_Aint target_disp, int target_count, 
             MPI_Datatype target_type, MPI_Win win) 

 MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_TYPE,   
         TARGET_RANK, TARGET_DISP, TARGET_COUNT,  
         TARGET_TYPE, WIN, IERROR) 
   <type>  :: ORIGIN_ADDR(*) 
   INTEGER :: ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK, 
              TARGET_COUNT, TARGET_TYPE, WIN, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: TARGET_DISP 

  Transfer origin  target 
  No matching call on target side 
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MPI RMA operation accumulate 

 int MPI_Accumulate(void* origin_addr, int origin_count, 
          MPI_Datatype origin_type, int target_rank, 
          MPI_Aint target_disp, int target_count, 
          MPI_Datatype target_type, MPI_Op op, MPI_Win win) 

 MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_TYPE, 
          TARGET_RANK, TARGET_DISP, TARGET_COUNT,  
          TARGET_TYPE, OP, WIN, IERROR) 
   <type>  :: ORIGIN_ADDR(*) 
   INTEGER :: ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK, 
              TARGET_COUNT, TARGET_TYPE, OP, WIN, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: TARGET_DISP 
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MPI RMA operation get 

 int MPI_Get(void* origin_addr, int origin_count, 
             MPI_Datatype origin_type, int target_rank, 
             MPI_Aint target_disp, int target_count, 
             MPI_Datatype target_type, MPI_Win win) 

 MPI_GET (ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_TYPE,   
         TARGET_RANK, TARGET_DISP, TARGET_COUNT,  
         TARGET_TYPE, WIN, IERROR) 
   <type>  :: ORIGIN_ADDR(*) 
   INTEGER :: ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK, 
              TARGET_COUNT, TARGET_TYPE, WIN, IERROR 
   INTEGER(KIND=MPI_ADDRESS_KIND) :: TARGET_DISP 

  Transfer target  origin 
  No matching call on target side 
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 int MPI_Rput(void* origin_addr, int origin_count, 
              MPI_Datatype origin_type, int target_rank, 
              MPI_Aint target_disp, int target_count, 
              MPI_Datatype target_type, MPI_Win win, 
              MPI_Request *req) 

Only for passive target 
communication 
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Synchronization schemes 
Active target synchronization (ATC): origin 
and target participate equally in synchronizing 
the RMA operations. 

  Collective synchronization with fence 
  General active target synchronization 

(GATS) 

Passive target synchronization (PTC): 
target process is not explicitly taking part in 
the synchronization of the accessing RMA 
operation. 

  Synchronization with locks 

sync 
sync 

access 
sync 

sync 

Task l Task m 

lock 

access 

unlock 

Task l Task m 
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ATC: Synchronization with fence 

  Collective call on communicator used for window creation 
  Contains an implicit barrier 
  Data access has to occur between two fence calls 
  Written and read data is only accessible after completing 

fence 
 Local and remote accesses must not occur between 

the same fence calls 
  Access and exposure epoch matching is done 

automatically 

sync 
sync 

access 
sync 

sync 

Task l Task m 
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ATC: Synchronization with fence 

 int MPI_Win_fence(int assert, MPI_Win win) 

 MPI_WIN_FENCE(ASSERT, WIN, IERROR) 
   INTEGER :: ASSERT, WIN, IERROR 

sync 
sync 

access 
sync 

sync 

Task l Task m 
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ATC: General active target  
synchronization (GATS) sync 

sync 
access 

sync 
sync 

Task l Task m 
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GATS: Access epoch 

 int MPI_Win_start(MPI_Group group, int assert, MPI_Win win) 
 int MPI_Win_complete(MPI_Win win) 

 MPI_WIN_START(GROUP, ASSERT, WIN, IERROR) 
   INTEGER :: GROUP, ASSERT, WIN, IERROR 
 MPI_WIN_COMPLETE(WIN, IERROR) 
   INTEGER :: WIN, IERROR 
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GATS: Exposure epoch 

 int MPI_Win_post(MPI_Group group, int assert, MPI_Win win) 
 int MPI_Win_wait(MPI_Win win) 

 MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR) 
   INTEGER :: GROUP, ASSERT, WIN, IERROR 
 MPI_WIN_WAIT(WIN, IERROR) 
   INTEGER :: WIN, IERROR 
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PTC: General remarks lock 

access 

unlock 

Task l Task m 



July 9, 2014 Slide 144 

PTC: Lock and Unlock 

 int MPI_Win_lock(int lock_type, int rank, int assert,     
                  MPI_Win win) 
 int MPI_Win_unlock(int rank, MPI_Win win) 

 MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR) 
   INTEGER :: LOCK_TYPE, RANK, GROUP, ASSERT, WIN, IERROR 
 MPI_WIN_UNLOCK(RANK, WIN, IERROR) 
   INTEGER :: RANK, WIN, IERROR 

lock 

access 

unlock 

Task l Task m 
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PTC: Lock_all and Unlock_all 

 int MPI_Win_lock_all(int assert, MPI_Win win) 
 int MPI_Win_unlock_all(MPI_Win win) 

 MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR) 
   INTEGER :: ASSERT, WIN, IERROR 
 MPI_WIN_UNLOCK_ALL(WIN, IERROR) 
   INTEGER :: RANK, WIN, IERROR 

lock 

access 

unlock 

Task l Task m 
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PTC: Flush 

 int MPI_Win_flush (int rank, MPI_Win win) 
 int MPI_Win_flush_all(MPI_Win win) 

 MPI_WIN_FLUSH(RANK, WIN, IERROR) 
   INTEGER :: RANK, WIN, IERROR 
 MPI_WIN_FLUSH_ALL(WIN, IERROR) 
   INTEGER :: RANK, WIN, IERROR 

lock 

access 

unlock 

Task l Task m 
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Adding/retrieving Information about Windows 



July 9, 2014 Slide 148 

Further/Advanced MPI topics 
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Summary 

In this talk we discussed 
  Hard- and software concepts  
  A concept for design of parallel programs 
  Basics of MPI and selected topics 

To design and write parallel code with MPI: think! 
  Analyze you algorithm 
  What hardware the code should run on? 
  What is already available (algorithms, libraries, …)? 
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Summary 

When using MPI 
  Avoid communication if possible  
  Use as few resources as possible 
  Provide as much information to MPI as possible 
  Give MPI the freedom to optimize 
  Check the MPI environment on the target system 

 Message transfer protocol (eager limit) 
  Switch for asynchronous communication 
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Summary 

To optimize parallel code 

 See the next talk 
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Thanks! 


