
July 9, 2014

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Message-Passing Interface
Selected Topics and Best Practices

| Florian Janetzko

July 9, 2014 Slide 2

References and Literature

[EG10] Edgar Gabriel, Introduction to MPI IV –MPI derived datatypes, Lecture COSC 4397
Parallel Computation, University of Houston (2010).

[IF95] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Reading, MA: Addison-Wesley, 1995.
http://www.mcs.anl.gov/~itf/dbpp/

[MJQ04] M. J. Quinn. Parallel Programming in C with MPI and OpenMP, New York, NY: Mc
Graw Hill, 2004.

[MPI] The MPI Forum. MPI: A Message-Passing Interface Standard, Version 3.0 (2012).
http://www.mpi-forum.org/

[RR] Rolf Rabenseifner, Optimization of MPI Applications, University of Stuttgart High-
Performance Computing-Center Stuttgart (HLRS)

[WG99] W. Gropp, E. Lusk, A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface, 2nd ed., MIT Press, Cambridge (1999).

[WG99a] W. Gropp, E. Lusk, R. Thakur. Using MPI-2: Advanced Features of the Message-
Passing Interface, MIT Press, Cambridge (1999).

[WG05] William Gropp, Rusty Lusk, Rob Ross, and Rajeev Thakur, Advanced MPI: I/O and
One-Sided Communication, Presentation at the SC2005 (2005) .
http://www.mcs.anl.gov/research/projects/mpi/tutorial/advmpi/sc2005-advmpi.pdf

July 9, 2014 Slide 3

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practice

July 9, 2014 Slide 4

Outline – Introduction

  Introduction
  Motivation – Why going Parallel?
  Hardware – Basic Concepts
  Software – Programming Concepts

  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practice
  Summary

July 9, 2014 Slide 5

Motivation – Why going Parallel?

H2O

+
ν = 2100 cm-1

ν = 3821 cm-1

ν = 4278 cm-1

+

+

C256H381N65O79S6

July 9, 2014 Slide 6

Motivation – Why going Parallel?

Fast growth of parallelism of HPC systems
  Multi-core
  CPUs

Hardware limitations
  CPU frequency
  Cooling
  Power consumption

July 9, 2014 Slide 7

Motivation – Why going Parallel?

Simulations requirements are increasing
  Scientific problem sizes become larger
  Better accuracy/resolution required
  New kinds of scientific problems arise

Hardware limitations
  CPU frequency
  Cooling
  Power consumption

  Parallel Computing

July 9, 2014 Slide 8

Outline – Introduction

  Introduction
  Motivation – Why going Parallel?
  Hardware – Basic Concepts
  Software – Programming Concepts

  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practice

July 9, 2014 Slide 9

Hardware Basics: von Neumann Architecture

Simulations’ core requirements to hardware:
  Read data
  Perform instructions on data
  Write data/results

Memory

Control
Unit

Arithmetic
Logic
Unit

Input Output

CPU

What to do in parallel? All (computation AND I/O)

July 9, 2014 Slide 10

Hardware Basics: Flynn’s Taxonomy

Single Instruction Multiple Instructions
Single Data SISD MISD

Multiple data SIMD MIMD

  SISD: Uniprocessor, Pentium
  SIMD: SSE instruction of x86, vector processors
  MISD: not common, used for fault tolerance, digital signal

processing
  MIMD: Multiprocessor architecture

  Classification of computer architectures

July 9, 2014 Slide 11

Multiprocessor Architectures:
Shared Memory

  All CPUs share the same memory
  Single address space
  Uniform memory access (UMA) multiprocessor
  Symmetric multiprocessor (SMP)

Memory

CPU CPU CPU CPU

July 9, 2014 Slide 12

Multiprocessor Architectures:
Distributed Memory

  Each CPU has its own memory and address space
  Non-uniform memory access (NUMA)
  Data exchange between memory of different CPUs

  Via interconnect
  Explicit data transfer necessary (message passing)

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Interconnection

July 9, 2014 Slide 13

Nowadays Multiprocessor Architectures:
Hybrid Distributed-Shared Memory Architectures

  SMP with up to 16 cores
  Several SMP are combined in one compute node (CN)

  Shared memory within one CN
  CN are connected via a network

  Distributed memory between different CNs

Interconnection

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

July 9, 2014 Slide 14

Processes and Threads

Process
  Instance of the OS to execute a program
  Executes one or multiple threads of execution

Thread
  Smallest unit of processing
  Sequence of instructions

Threads can be created and destroyed within a process and
  Share the address space of the parent process (heap

and static global data)
  Have a local stack

July 9, 2014 Slide 15

Multithreading

Multithreading:
  A process can execute several threads
  Threads can be created and destroyed at run-time
  Threads share heap and static global data but have their own stack

and registers

Example: Simultaneous multithreading (SMT) (Hardware MT)

July 9, 2014 Slide 16

Outline – Introduction

  Introduction
  Motivation – Why going Parallel?
  Hardware – Basic Concepts
  Software – Programming Concepts

  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practice

July 9, 2014 Slide 17

Software: Programming Paradigms

SPSD
(single program single data)

SPMD
(single program multiple data)

MPMD
(multiple programs multiple data)

tim
e

July 9, 2014 Slide 18

Parallel Programming Concepts

Classification according to process interaction
1.  Message passing

  Parallel processes exchange data by passing messages
  Examples: PVM, MPI

2.  Shared memory
  Parallel threads share a global address space
  Examples: POSIX threads, OpenMP

3.  Implicit
  Process interaction is not visible to the programmer
  Examples: PGAS (CAF, UPC), GA

July 9, 2014 Slide 19

Outline – Introduction

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practice

July 9, 2014 Slide 20

Task/Channel Model
Task
A program, its local memory, and a collection of I/O ports. Tasks can
communicate with each other via channels.

Channel
A message queue which connects the output port of one task with the input
port of another task.

Primitive Task (ptask)
The smallest logical unit of instructions an algorithm can be split in.

Primitive task (ptasks)

Communication channel

July 9, 2014 Slide 21

Foster‘s Design Methodology

Problem
Partitioning

Mapping Agglomeration

Communication

July 9, 2014 Slide 22

Partitioning

Splitting the problem into smaller pieces
  Data-centric approach (Domain decomposition)

  Computation-centric approach
a

b

c

max

min

avg

+ = α + = α

⁞ ⁞ ⁞

ptask

ptask

July 9, 2014 Slide 23

Partitioning

Checklist for good partitioning schemes

  The ratio tasks/number of cores should be at least 10:1
  Avoid redundant storage of data
  Try to have tasks of comparable size
  The number of tasks should scale with the problem size

July 9, 2014 Slide 24

Communication

Local Communication
  A task needs data from a small number of other tasks

Global Communication
  A task needs data from all other tasks

Communication is part of the parallel overhead, so check
 Communication operations should be balanced among tasks
 Minimize communication
  Tasks can communicate concurrently
  Tasks can compute concurrently

July 9, 2014 Slide 25

Agglomeration

Simplify the program
Increase locality

1.  Grouping tasks together elimination of communication
2.  Grouping sending and receiving ptasks less messages

1. 2.

Maintain scalability
  Do not group too many tasks
  Extreme: group everything serial code!

July 9, 2014 Slide 26

Agglomeration

Checklist for good agglomeration scheme

  Increase locality
 Check that replicated computations use less time than

the communication they replace
 Computation and communication per task is balanced
 Number of tasks is an increasing function of the problem

size
 Number of tasks fits to target (HPC) architecture

July 9, 2014 Slide 27

Mapping

Assigning tasks to cores – sometimes conflicting goals

Maximizing system utilization

Minimizing inter-processor communication

Considerations/checklist:
 One task or multiple tasks per processor
 Ratio tasks to processors
 Static or dynamic allocation of tasks to processors
 Hybrid programming approach?

July 9, 2014 Slide 28

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview

  Introduction and History
  Basic concepts and terms
  General usage

  MPI – Selected Topics and Best Practices

July 9, 2014 Slide 29

Introduction – What is MPI?

MPI (Message-Passing Interface)

  Industry standard for a message-passing programming model
  Provides specifications
  Implemented as a library with language bindings for Fortran and C
  Portable across different computer architectures

  Purpose: provision of a means for communication between processes

July 9, 2014 Slide 30

Brief History

<1992 Several message-passing libraries were developed
  PVM, P4, LAM …

1992 SC92: Several developers for message-passing
libraries agreed to develop a standard for message passing

1994 MPI-1 standard published
1997 Development of MPI-2 standard started
2008 MPI-2.1
2009 MPI-2.2
2012 MPI-3.0, current version of the MPI standard

July 9, 2014 Slide 31

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview

  Introduction and History
  Basic concepts and terms
  General usage

  MPI – Selected Topics and Best Practices

July 9, 2014 Slide 32

MPI Terminology – Basics

Context
A property that allows the partitioning of the communication space

Group
An ordered set of process identifiers (henceforth: processes)

Task
An instance, sub-program or process of an MPI program

Communicator
Scope for communication operations within or between groups (intra-communicator
or inter-communicator). Combines the concepts of group and context.

Rank
A unique number assigned to each task of an MPI program within a group (start at 0)

July 9, 2014 Slide 33

Task

MPI Terminology – Communicators, Groups, Context

Intra-communicator Inter-communicator

1

2 0

3

0 Rank

Group

Communicator

Communication in context A

Communication in context B

1

2 0

3

July 9, 2014 Slide 34

MPI Terminology – Data Types

  Basic data types for Fortran and C are different
  Examples:

Basic Data Types
Data types which are defined within the MPI standard

Derived Data Types
Data types which are constructed from basic (or derived) data types

Fortran type MPI basic type
INTEGER MPI_INTEGER
REAL MPI_REAL
CHARACTER MPI_CHARACTE

R

C type MPI basic type
signed int MPI_INT
float MPI_FLOAT
char MPI_CHAR

July 9, 2014 Slide 35

MPI Terminology – Messages

  Packet of data:
  An array of elements of an MPI data type (basic or derived data type)
  Described by

  Position in memory (address)
  Number of elements
  MPI data type

  Information for sending and receiving messages
  Source and destination process (ranks)
  Source and destination location
  Source and destination data type
  Source and destination data size

Message
A packet of data which needs to be exchanged between processes

5

July 9, 2014 Slide 36

MPI Terminology – Properties of Procedures (I)

Examples
  Blocking

  Nonblocking

Blocking
A procedure is blocking if return from the procedure indicates that the user
is allowed to reuse resources specified in the call to the procedure.

Nonblocking
If a procedure is nonblocking it will return as soon as possible from to the
calling process. However, the user is not allowed to reuse resources
specified in the call to the procedure before the communication has been
completed by an appropriate call at the calling process.

July 9, 2014 Slide 37

MPI terminology – Properties of procedures (II)

Collective
A procedure is collective if all processes in a group need to invoke the
procedure

Synchronous
A synchronized operation will complete successfully only if the (required)
matching operation has started (send – receive).

Buffered (Asynchronous)
A buffered operation may complete successfully before a (required)
matching operation has started (send – receive).

July 9, 2014 Slide 38

(Non-)Blocking – (A)Synchronous

(Non)-Blocking
  Statement about reusability of message buffer

(A)Synchronous
  Statement about matching communication call

Example
  Blocking, synchronous sending:

  Will return from call when buffer can be reused
  After return receiving has started

  Blocking, asynchronous sending:
  Will return from call when buffer can be reused
  After return, receiving has not started necessarily,

message may be buffered internally

July 9, 2014 Slide 39

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview

  Introduction and History
  Basic concepts and terms
  General usage

  MPI – Selected Topics and Best Practices

July 9, 2014 Slide 40

The MPI infrastructure – Linking

Program must be linked against an MPI library
  Usually done using compiler wrappers

 Names of these wrappers are not standardized! The prefix
mpi is very common, however, other prefixes and names are

possible, e.g. mpcc for the IBM XL C compiler on AIX.

mpicc myprog.c –o myprog
mpiCC myprog.cc –o myprog

mpif90 myprog.f90 –o myprog

July 9, 2014 Slide 41

The MPI infrastructure – Launching applications

Program must be started with the MPI start-up mechanism

mpirun [options] my_application.exe
mpiexec [options] my_application.exe

Names of these start-up mechanisms are not standardized!
The above commands are very common, however, other
mechanisms are possible, e.g. poe on AIX or runjob on

Blue Gene/Q (e.g. JUQUEEN).

July 9, 2014 Slide 42

Language bindings

Language bindings for
  Fortran (Fortran77, Fortran90, Fortran2008 compatible)
  ISO C

Definitions included using header files

#include <mpi.h>

For Fortran the Fotran77/Fortran90 bindings are used
throughout this talk

July 9, 2014 Slide 43

Nomenclature of MPI functions

Generic format of MPI functions

Never ever forget the ierror parameter in Fortran calls
because this may lead to unpredictable behavior!

MPI Namespace:
MPI_ and PMPI_ prefixes must not be used for user-defined

functions or variables since they are used by MPI!

 error = MPI_Function(parameter,...);

 call MPI_FUNCTION(parameter,...,ierror)

July 9, 2014 Slide 44

Example: initialization and finalization of MPI

 int MPI_Init(int *argc, char ***argv);

 MPI_INIT(IERROR)
 INTEGER :: IERROR

 int MPI_Finalize(void);

 MPI_FINALIZE(IERROR)
 INTEGER :: IERROR

July 9, 2014 Slide 45

Example: getting total number of tasks

 int MPI_Comm_size(MPI_Comm comm, int *size)

 MPI_COMM_SIZE(COMM, SIZE, IERROR)
 INTEGER :: COMM, SIZE, IERROR

…
ierror = MPI_Comm_size(MPI_COMM_WORLD, &size);
…

…
call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
…

July 9, 2014 Slide 46

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practices

  General Hints and Remarks
  Point-to-Point Communication
  Collective Communication
  Derived Datatypes
  MPI_Info Object
  One-sided Communication

July 9, 2014 Slide 47

General performance considerations – I

Communication protocols
  Rendezvous protocol

 Optimized for high bandwidth
  Needs an initial handshake between involved tasks
 high latency

  Eager protocol
  Low latency but low bandwidth
  Useful for many small messages

  Which protocol is used is determined by the eager limit
(message size in bytes > eager limit rendezvous)

  Check environment variables!

July 9, 2014 Slide 48

General performance considerations – II

Communication overhead
Transfer time = latency + message length / bandwidth

  Latency: Startup for message handling
  Bandwidth: Transfer of bytes

  For n messages
Transfer time = n*latency + total message length /
bandwidth

  Try to avoid communication
  Send few big messages instead of many small ones
  Chose the appropriate protocol

July 9, 2014 Slide 49

General hints and recommendations

Avoid communication if possible (usually)
  No communication is the fastest communication

Use as few resources as possible
  Keeps small memory/communication footprint

Provide as much information to MPI as possible
  Allows MPI to choose best way of delivering messages
  Allows MPI to optimize/reorder communication

1

2

3

Give MPI the freedom to optimize
  Let MPI choose best way of communication

4

July 9, 2014 Slide 50

Common mistakes

Wrong API usage
  Missing ierror argument in Fortran
  Collective routines not called on all ranks of com

Wrong variable declarations
  Using INTEGER where MPI_OFFSET_KIND or

MPI_ADDRESS_KIND is needed
  status variable not declared with dimension

MPI_STATUS_SIZE (Fortran)
Nonblocking communication

  Reusing buffers before it is save to do so
  Missing MPI_Wait[…]

July 9, 2014 Slide 51

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practices

  General Hints and Remarks
  Point-to-Point Communication
  Collective Communication
  Derived Datatypes
  MPI_Info Object
  One-sided Communication

July 9, 2014 Slide 52

Point-to-point communication

  Communication between two processes
!  Note: A process can send messages to itself !

  A source process sends a message to a destination
process by a call to an MPI send routine

  A destination process needs to post a receive by a call
to an MPI receive routine

  The destination process is specified by its rank in the
communicator, e.g. MPI_COMM_WORLD

  Every message sent with a point-to-point call, needs to
be matched by a receive.

July 9, 2014 Slide 53

Parts of messages

July 9, 2014

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Point-to-Point Communication
Blocking communication

| Florian Janetzko

July 9, 2014 Slide 55

time

0

1

Blocking Communication

Computation interrupted by communication

Computation

Communication

July 9, 2014 Slide 56

Sending messages

 int MPI_Send(void *buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

 MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
 <type> :: BUF(*)
 INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, IERROR

July 9, 2014 Slide 57

Receiving messages

 int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Status *status)

 MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS,
 IERROR)
 <type> :: BUF(*)
 INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM,
 STATUS(MPI_STATUS_SIZE), IERROR

July 9, 2014 Slide 58

Send modes
Synchronous send: MPI_Ssend
•  Only completes when the receive has started

Buffered send: MPI_Bsend

Standard send: MPI_Send
•  Either synchronous or buffered
•  Uses an internal buffer if buffered

Ready send: MPI_Rsend
•  Always completes (unless an error occurs) irrespective of whether a

receive has been posted or not
•  May be started only if the matching receive is already posted

July 9, 2014 Slide 59

MPI_Send

  Depends on the MPI implementation
  Do not assume either case:

  It can buffer
On the sender side
On the receiver side

  It can wait for the matching receive to start

Standard send: MPI_Send
•  Either synchronous or buffered
•  Uses an internal buffer if buffered

July 9, 2014 Slide 60

MPI_Rsend

  User’s responsibility for writing a correct program
  Error-prone, use only if absolutely necessary and you

really know what you are doing!

Ready send: MPI_Rsend
•  Always completes (unless an error occurs) irrespective of whether a

receive has been posted or not
•  May be started only if the matching receive is already posted

July 9, 2014 Slide 61

Pitfall 1 – Blocking point-to-point communication

1

2

0

3

…
Call MPI_Ssend(…,dest=my_right_neighbor,…)
Call MPI_Recv(…,source=my_left_neighbor,…)
…

July 9, 2014 Slide 62

Pitfall 2 – Blocking point-to-point communication

1 0

if (myrank == 0) {
 ierr = MPI_Send(…,dest=1,…)
 ierr = MPI_Recv(…,source=1,…)
}
else {
 ierr = MPI_Send(…,dest=0,…)
 ierr = MPI_Recv(…,source=0,…)
}

July 9, 2014 Slide 63

Pitfall 3 – Blocking point-to-point communication

  Will fill-up message and/or envelop
buffers
 Performance penalty
  Try to combine messages
  Use collective communication
  Posting receives before sends

reduces buffer space

if (my_rank != 0){
 for (i=1;i<=100000;i++){
 ierr = MPI_Send(…,dest=0,…)
 }
}
else {
 receive messages
}

0

1

2

3

4
5

6

July 9, 2014 Slide 64

Pitfall 4 – Blocking point-to-point communication

  Usage of synchronized sends might
lead to serialization

  Use buffered send or nonblocking
send/receive

if (my_rank == 0) then
 call MPI_Ssend(…,dest=1,…)
else if (myrank == 1) then
 call MPI_Recv(…,source=0,…)
 call MPI_Ssend(…,dest=2,…)
else if (myranks == 2) then
 call MPI_Recv(…,source=1,…)
 call MPI_Ssend(…,dest=3,…)
else if (myrank == 3) then
 call MPI_Recv(…,source=2,…)
endif

1

2

0

3

0 1

2

3

1

2

July 9, 2014 Slide 65

Pitfall 5 – Blocking point-to-point communication

  Sender waits for receiver to call
corresponding receive operation

  Performance penalty
  Use nonblocking calls

0 1

  Receiver waits for sender to call
corresponding send operation

  Performance penalty
  Use nonblocking calls

Example:
 Communication between task 0 and 1

July 9, 2014 Slide 66

Blocking point-to-point – Recommendations

2

4 3

July 9, 2014

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Point-to-Point Communication
Nonblocking communication

| Florian Janetzko

July 9, 2014 Slide 68

Nonblocking Communication

Solution for many pitfalls in blocking communication

0

1

time

Computation

Communication

 Initialization of communication
 Attending other work/test for completion
 Completion of communication

July 9, 2014 Slide 69

Phase – General

July 9, 2014 Slide 70

Phase – Communication modes

July 9, 2014 Slide 71

Phase – Nonblocking send

 int MPI_Isend(void *buf, int count, MPI_Datatype
 datatype, int dest, int tag, MPI_Comm comm,
 MPI_Request *request)

 MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,
 IERROR)
 <type> :: BUF(*)
 INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

July 9, 2014 Slide 72

Phase – Nonblocking receive

 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Request *request)

 MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,
 REQUEST, IERROR)
 <type> :: BUF(*)
 INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

July 9, 2014 Slide 73

July 9, 2014 Slide 74

Phase – Test

 int MPI_Test(MPI_Request *request, int *flag,
 MPI_Status *status)

 MPI_TEST(REQUEST, STATUS, FLAG, IERROR)
 LOGICAL :: FLAG
 INTEGER :: REQUEST, STATUS, IERROR

July 9, 2014 Slide 75

Phase – Wait

 int MPI_Wait(MPI_Request *request, MPI_Status *status)

 MPI_WAIT(REQUEST, STATUS, IERROR)
 INTEGER :: REQUEST, STATUS, IERROR

July 9, 2014 Slide 76

Pitfall – Not truly nonblocking commnication

0

1

time

 Communication may not be truly asynchronous!

July 9, 2014 Slide 77

Pitfall – Not truly nonblocking commnication

Usually nonblocking communication is used to
  Avoid deadlocks
  Avoid idle times to wait for receiver or sender

Therefore
  Use nonblocking routines for these cases
  Do not spend too much time in this
  Check system documentation (environment variables)

July 9, 2014 Slide 78

Pitfall – Environment settings

On some systems special environment variables must be set
to benefit from nonblocking communication

  One-sided or nonblocking point-to-point communication
  Blue Gene/P

export DCMF_INTERRUPT=1
  Blue Gene/Q

export PAMID_ASYNC_PROGRESS=1

Check information for your system!
Also check other environment settings on the system!

July 9, 2014 Slide 79

Pitfall – Remember the communication protocol

MPI usually switches protocols depending on message size
  Large messages rendezvous protocol
  Small messages eager protocol

Trade-off between latency and bandwidth
  Rendezvous protocol might lead to time penalties if sender is

blocked while waiting for receiver
  Eager protocol might lead to time penalties when large

messages are send with low bandwidth

Check limit for rendezvous protocol and adjust it to your needs!

July 9, 2014 Slide 80

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practices

  General Hints and Remarks
  Point-to-Point Communication
  Collective Communication
  Derived Datatypes
  MPI_Info Object
  One-sided Communication

July 9, 2014 Slide 81

Characteristics of collective communication

  Collective action over a communicator.
 All processes of the communicator must communicate,

i.e. all processes must call the collective routine.
  Synchronization may or may not occur
  Collective operations can be blocking or nonblocking

(MPI3.0)
  No tags are used

July 9, 2014 Slide 82

Collective communication – overview

July 9, 2014 Slide 83

Example: broadcast

 int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
 int root, MPI_Comm comm)

 MPI_BCAST(BUF, COUNT, DATATYPE, ROOT, COMM, IERROR)
 <type> :: BUF(*)
 INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

Blocking

 int MPI_Ibcast(void *buf, int count, MPI_Datatype datatype,
 int root, MPI_Comm comm, MPI_Request *req)

 MPI_IBCAST(BUF, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
 <type> :: BUF(*)
 INTEGER :: COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

Nonblocking

July 9, 2014 Slide 84

Properties of nonblocking collective routines

EXCEPTION: nonblocking collective operations cannot be
matched with blocking collective operations

July 9, 2014 Slide 85

General hints for collective routines

July 9, 2014 Slide 86

Pitfall 1 – Collective communication

Collective routines
  ALL ranks of a communicator have to execute them
  Do not mix P2P and collective routines!

…
if (my_rank == 0)
{
 MPI_Bcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
}
else
{
 MPI_Recv(&result, 1, MPI_DOUBLE, 0, MPI_ANY_TAG, MPI_COMM_WORLD, stat);
}
…

July 9, 2014 Slide 87

Pitfall 2 – Collective communication

Do not mix blocking and nonblocking collectives!

…
if (my_rank == 0)
{
 MPI_Bcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
}
else
{
 MPI_Ibcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD, &request);
}
…

July 9, 2014 Slide 88

Pitfall 3 – Collective communication

Blocking collective
  Operations must be executed in the same order on all

participating tasks
  Otherwise a deadlock will occur

…
if (my_rank == 0)
{
 MPI_Bcast(&result1, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Bcast(&result2, 1, MPI_DOUBLE, 1, MPI_COMM_WORLD);
}
else
{
 MPI_Bcast(&result2, 1, MPI_DOUBLE, 1, MPI_COMM_WORLD);
 MPI_Bcast(&result1, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
}
…

July 9, 2014 Slide 89

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practices

  General Hints and Remarks
  Point-to-Point Communication
  Collective Communication
  Derived Datatypes
  MPI_Info Object
  One-sided Communication

July 9, 2014 Slide 90

Motivation

With MPI communication calls only multiple consecutive
elements of the same type can be sent

Buffers may be non-contiguous in memory
  Sending only the real/imaginary part of a buffer of

complex doubles
  Sending sub-blocks of matrices

Buffers may be of mixed type
  User defined data structures

struct buff_layout {
 int i[4];
 double d[5];
} buffer;

July 9, 2014 Slide 91

Solutions without MPI derived datatypes

Non-contiguous data of a single type
  Consecutive MPI calls to send and receive each element

in turn
  Additional latency costs due to multiple calls

  Copy data to a single buffer before sending it
  Additional latency costs due to memory copy

Contiguous data of mixed types
  Consecutive MPI calls to send and receive each element

in turn
  Additional latency costs due to multiple calls

July 9, 2014 Slide 92

Derived datatypes

  General MPI datatypes describe a buffer layout in
memory by specifying
  A sequence of basic datatypes
  A sequence of integer (byte) displacements

  Derived datatypes are derived from basic datatypes
using constructors

  MPI datatypes are referenced by an opaque handle

July 9, 2014 Slide 93

Creating a derived datatype: Type map

Any derived datatype is defined by its type map
  A list of basic datatypes
  A list of displacements (positive, zero, or negative)
  Any type matching is done by comparing the sequence

of basic datatypes in the type maps
General type map:

Datatype Displacement
datatype 0 displacement of datatype 0
datatype 1 dispalcement of datatype 1

… …

July 9, 2014 Slide 94

Example of a type map

struct buff_layout {
 int i[4];
 double d[5];
} buffer;

0 4 8 12 32 16 24 40 48

Datatype Displacement

MPI_INT 0

MPI_INT 4

MPI_INT 8

MPI_INT 12

MPI_DOUBLE 16

MPI_DOUBLE 24

MPI_DOUBLE 32

MPI_DOUBLE 40

MPI_DOUBLE 48

July 9, 2014 Slide 95

Datatype constructors

Use the simplest derived datatype
that suits your needs. The more

complex the datatype the slower is
its handling.

July 9, 2014 Slide 96

Struct data

 int MPI_Type_create_struct(int count, int *array_of_blocklengths,
 MPI_Aint *array_of_displacements, MPI_Datatype *array_of_types,
 MPI_Datatype *newtype)

 MPI_TYPE_CREATE_STRUCT(COUNT,
ARRAY_OF_BLOCKLENGTHS,ARRAY_OF_DISPLACEMENTS,

 ARRAY_OF_TYPES, NEWTYPE,IERROR)
 INTEGER :: COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
 IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: ARRAY_OF_DISPLACEMENTS(*)

array_of_blocklength(0)=4

oldtypes MPI_INTEGER MPI_REAL

newtype

array_of_blocklength(1)=5

array_of_displacement(0)=0 array_of_displacement(1)=16

array_of_types(0)=MPI_INTEGER
array_of_types(1)=MPI_REAL

July 9, 2014 Slide 97

Committing and freeing derived datatypes

  Before it can be used in a communication, each derived datatype has to be
committed

 int MPI_Type_commit(MPI_Datatype *datatype)

 MPI_TYPE_COMMIT(DATATYPE, IERROR)
 INTEGER :: DATATYPE, IERROR

 int MPI_Type_free(MPI_Datatype *datatype)

 MPI_TYPE_FREE(DATATYPE, IERROR)
 INTEGER :: DATATYPE, IERROR

  Mark a datatype for deallocation
  Datatype will be deallocated when all pending operations are finished

July 9, 2014 Slide 98

Example: exchanging velocity information

For each point there are
  3 coordinates
  3 color values (r, g, b, ϵ [0, 255])

struct pointstrct
{
 int r;
 int g;
 int b;
 double x;
 double y;
 double z;
} point;

type pointstrct
 integer :: r
 integer :: g
 integer :: b
 real*8 :: x
 real*8 :: y
 real*8 :: z
end type pointstrct
type (pointstrct) :: point

July 9, 2014 Slide 99

Pitfall 1 – Derived datatypes for structs/types

struct pointstrct
{
 int r;
 int g;
 int b;
 double x;
 double y;
 double z;
} point;

array_of_blocklength(0)=3

oldtypes MPI_INTEGER MPI_REAL

newtype

array_of_blocklength(1)=5

array_of_displacement(0)=0 array_of_displacement(1)=12

array_of_types(0)=MPI_INTEGER
array_of_types(1)=MPI_REAL

 int MPI_Type_create_struct(int count,
 int *array_of_blocklengths,
 MPI_Aint *array_of_displacements,
 MPI_Datatype *array_of_types,
 MPI_Datatype *newtype)

July 9, 2014 Slide 100

Pitfall 1 – Derived datatypes for structs/types

struct pointstrct
{
 int r;
 int g;
 int b;
 double x;
 double y;
 double z;
} point;

0 4 8 12 32 16 24 40 48

addrint addrdbl

July 9, 2014 Slide 101

Pitfall 1 – Derived datatypes for structs/types

  Finding addresses and relative displacements of
memory blocks

 int MPI_Get_address(void *location, MPI_Aint *address)

MPI_Aint addr_block_1, addr_block_2;
MPI_Aint displacement = 0;

MPI_Get_address(&block_1, &addr_block_1);
MPI_Get_address(&block_2, &addr_block_2);

displacement = addr_block_2 - addr_block_1;

 MPI_GET_ADDRESS(LOCATION,ADDRESS,IERROR)
 <type> :: LOCATION(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) :: ADDRESS
 INTEGER :: IERROR

July 9, 2014 Slide 102

Correct derived datatypes for structs (C)

MPI_Get_address(&point,&addrbase);
MPI_Get_address(&point.x,&addrdbl);

displ[0] = 0;
displ[1] = addrdbl – addrbase;

type[0] = MPI_INT;
type[1] = MPI_DOUBLE;

length[0] = 3;
length[1] = 3;

MPI_Type_create_struct(2,length,displ,type,&mypoint);
MPI_Type_commit(&mypoint);

struct pointstrct
{
 int r;
 int g;
 int b;
 double x;
 double y;
 double z;
} point;

July 9, 2014 Slide 103

Correct derived datatypes for types (FORTRAN)

call MPI_Address(point,addrbase,ierror)
call MPI_Address(point%x,addrdbl,ierror)

displ(0) = 0
displ(1) = addrdbl – addrbase

type(0) = MPI_INTEGER
type(1) = MPI_REAL8

length(0) = 3
length(1) = 3

call MPI_Type_create_struct(2,length,displ,type,mypoint,ierror)
call MPI_Type_commit(mypoint,ierror)

type pointvel
 integer :: r
 integer :: g
 integer :: b
 real*8 :: x
 real*8 :: y
 real*8 :: z
end type pointvel
type (pointstrct) :: point

July 9, 2014 Slide 104

Pitfall 2 – Sending parts of structures

Just want to send b and x of all elements

struct pointstrct
{
 int r;
 int g;
 int b;
 double x;
 double y;
 double z;
} point[10];

MPI_Get_address(&point,&addrbase);
MPI_Get_address(&point.b,&addrb);
MPI_Get_address(&point.x,&addrdbl);
displ[0] = addrb - addrbase;
displ[1] = addrdbl – addrbase;
type[0] = MPI_INT;
type[1] = MPI_DOUBLE;
length[0] = 1;
length[1] = 1;
MPI_Type_create_struct(2,length,displ,type,&newpoint);
MPI_Type_commit(&newpoint);

Wrong!
(except for first Element)

Memory:

done:
intended:

0 4 8 12 32 16 24

July 9, 2014 Slide 105

Sending parts of structures

MPI_Get_address(&point[0],&addrbase);
MPI_Get_address(&point[0].b,&addrb)
MPI_Get_address(&point[0].x,&addrx);
MPI_Get_address(&point[1],&addrn);
displ[0] = 0;
displ[1] = addrdb – addrbase;
displ[2] = addrdx – addrbase;
displ[3] = addrdn – addrbase;
type[0] = MPI_LB; length[0] = 1;
type[1] = MPI_INT; length[0] = 1;
type[2] = MPI_DOUBLE; length[0] = 1;
type[3] = MPI_UB; length[0] = 1;

MPI_Type_create_struct(4,length,displ,type,&mypoint);
MPI_Type_commit(&mypoint);

July 9, 2014 Slide 106

Sending parts of structures

 int MPI_Type_create_resized(MPI_Datatype oldtype,
 MPI_Aint lb, MPI_Aint extent,
 MPI_Datatype* newtype)

 MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE,
 IERROR)
 INTEGER :: OLDTYPE, NEWTYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: LB, EXTENT

July 9, 2014 Slide 107

Sending parts of structures

[…]
MPI_Get_address(&point[0],&addrbase);
MPI_Get_address(&point[1],&addrn);

lb = addrbase;
extend = addrn – addrbase;

MPI_Type_create_resized(newpoint,lb,extend,&npoint);
MPI_Type_commit(&npoint);

July 9, 2014 Slide 108

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practices

  General Hints and Remarks
  Point-to-Point Communication
  Collective Communication
  Derived Datatypes
  MPI_Info Object
  One-sided Communication

July 9, 2014 Slide 109

3

July 9, 2014 Slide 110

Create and free MPI_Info objects

  The created info objects contains no (key,value) pairs

 int MPI_Info_create(MPI_Info info)

 MPI_INFO_CREATE(INFO, IERROR)
 INTERGER :: INFO, IERROR

 int MPI_Info_free(MPI_Info info)

 MPI_INFO_FREE(INFO, IERROR)
 INTERGER :: INFO, IERROR

July 9, 2014 Slide 111

Set and delete (key,value) pairs

 int MPI_Info_set(MPI_Info info, char *key, char *value)

 MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
 CHARACTER(*) :: KEY, VALUE
 INTERGER :: INFO, IERROR

 int MPI_Info_delete(MPI_Info info, char *key)

 MPI_INFO_DELETE(INFO, KEY, IERROR)
 CHARACTER(*) :: KEY
 INTERGER :: INFO, IERROR

July 9, 2014 Slide 112

Retrieve active (key,value) pairs of an info object

 int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

 MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
 INTERGER :: INFO, NKEYS, IERROR

 int MPI_Info_get_nthkey(MPI_Info info, int n, char *key);

 MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
 CHARACTER(*):: KEY
 INTERGER :: INFO, N, IERROR

July 9, 2014 Slide 113

Retrieve active (key,value) pairs of an info object

 int MPI_Info_get_valuelen(MPI_Info info, const char *key,
 int *valuelen, int *flag)

 MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
 CHARACTER (*) :: KEY
 INTERGER :: INFO, VALUELEN, IERROR
 LOGICAL :: FLAG

July 9, 2014 Slide 114

Retrieve active (key,value) pairs of an info object

 int MPI_Info_get(MPI_Info info, char *key,
 int valuelen, char *value, int *flag)

 MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
 CHARACTER(*):: KEY, VALUE
 INTERGER :: INFO, VALUELEN, IERROR
 LOGICAL :: FLAG

July 9, 2014 Slide 115

Example: Info objects for MPI I/O

Two possibilities
1.  Pass info object when opening file

  Information about file system properties
  Hints for MPI about access to file
  Information about buffering

2.  Associate info object with open file
  Same information can be passed
  Some I/O properties cannot be changed if the file is

already open Information may be ignored

July 9, 2014 Slide 116

1. Associate info objects when opening a file

 int MPI_File_open(MPI_Comm comm, char *filename,
 int amode, MPI_Info info, MPI_File *fh)

 MPI_FILE_OPEN(COMM, FILENAME ,AMODE, INFO, FH, IERROR)
 CHARACTER*(*) :: FILENAME
 INTEGER ::COMM,AMODE,INFO,FH,IERROR

July 9, 2014 Slide 117

2. Associate info objects with an open file

  Info items that cannot be changed for an open file need to be set when
opening the file

  MPI implementation may choose to ignore the hints in this call

 int MPI_File_set_info(MPI_File fh, MPI_Info info)

 MPI_FILE_SET_INFO(FH, INFO, IERROR)
 INTEGER :: FH, INFO, IERROR

July 9, 2014 Slide 118

Example keys for MPI I/O MPI_Info objects

July 9, 2014 Slide 119

Pitfalls – MPI_Info objects

Unknown keys
  Which keys are supported depends on the MPI

implementation
  MPI may choose to ignore unsupported keys

Values cannot become effective
  Some values can only be changed in certain routines (e.g. in

MPI I/O some values must be set when opening files)

Check always which keys are available and
whether they are active and set correctly!

July 9, 2014 Slide 120

Outline

  Introduction
  Parallel Algorithms – an Example for a Design Strategy
  Message-Passing Interface – Overview
  MPI – Selected Topics and Best Practices

  General Hints and Remarks
  Point-to-Point Communication
  Collective Communication
  Derived Datatypes
  MPI_Info Object
  One-sided Communication

July 9, 2014 Slide 121

Motivation

Point-to-point and collective MPI routines
  Sender needs to know which data to send and to which

process
  Receiver needs to wait for sender (cannot initiate

transfer)
Drawbacks for some communication patterns

  Sending process might not know what to send or to
which process to send

  Receiving process needs to initiate transfer
One-sided communication

  RMA (Remote Memory Access)

July 9, 2014 Slide 122

Terminology

Origin
The process triggering the one-sided operation, specifying all needed
parameters.

Target
The process providing access to its memory through a defined window. The
target does not explicitly participate in the data transfer.
Active target communication: Both origin and target process are involved
in the communication.
Passive target communication: Only the origin process(es) is (are)
involved in the communication.

July 9, 2014 Slide 123

Terminology

Access epoch (Origin process)
An access epoch is the time interval from the origin process’ start signal of
data access to its end signal of data access on a window.

Exposure epoch (Target process)
An exposure epoch is the time interval some defined data access is allowed
on a window. It starts and ends with synchronizations calls on the target
process (only for active target communication).

Window
A block of memory opened for remote access through MPI RMA operations.
Its definition is collective on all processes using this window. Only
designated targets have to specify a valid buffer, origins can use a special
placeholder to obtain a handle without opening memory for remote access.

July 9, 2014 Slide 124

passive target communication

active target communication

exposure epoch

access epoch

Terminology – Overview

… … …

Task l Task m Task n

sync
sync

lock

access
sync

sync

access

unlock

…

lock

access

unlock

…

…

local memory

Create Window Create Window Create Window

window

Free Window Free Window Free Window

origin tasks: l and n
target task : m

July 9, 2014 Slide 125

Initialization – Window creation (I)

 int MPI_Win_create(void *base, MPI_Aint *size,
 int disp_unit, MPI_Info info,
 MPI_Comm comm, MPI_Win *win)

 MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN,
 IERROR)
 <type> :: BASE(*)
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

July 9, 2014 Slide 126

Initialization – Window creation (II)

 int MPI_Win_allocate(MPI_Aint *size, int disp_unit,
 MPI_Info info, MPI_Comm comm,
 void *baseptr, MPI_Win *win)

 MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR,
 WIN, IERROR)
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

July 9, 2014 Slide 127

Initialization – Window creation (III)

 int MPI_Win_allocate_shared
 (MPI_Aint *size, int disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)

 MPI_WIN_ALLOCATE_SHARED
 (SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

July 9, 2014 Slide 128

Get Address of other Tasks’ Memory Segments

 int MPI_Win_shared_query
 (MPI_Win win, int rank, MPI_Aint *size,
 int *disp_unit, void *baseptr)

 MPI_WIN_SHARED_QUERY
 (WIN, RANK, SIZE, DISP_UNIT, BASEPTR, IERROR)
 INTEGER :: WIN, RANK, DISP_UNIT, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

July 9, 2014 Slide 129

Initialization – Window creation (IV)

 int MPI_Win_create_dynamic (MPI_Info info, MPI_Comm comm,
 MPI_Win *win)

 MPI_WIN_CREATE_DYNAMIC (INFO, COMM, WIN, IERROR)
 INTEGER :: INFO, COMM, WIN, IERROR

July 9, 2014 Slide 130

Attaching Memory to a Dynamic Window

 int MPI_Win_attach (MPI_Win win, void *base,
 MPI_Aint size)

 MPI_WIN_ATTACH (WIN, BASE, SIZE, IERROR)
 INTEGER :: WIN, IERROR
 <type> :: BASE(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

July 9, 2014 Slide 131

Detaching Memory to a Dynamic Window

 int MPI_Win_detach (MPI_Win win, void *base)

 MPI_WIN_DETACH (WIN, BASE, IERROR)
 INTEGER :: WIN, IERROR
 <type> :: BASE(*)

July 9, 2014 Slide 132

MPI RMA operation put

 int MPI_Put(void* origin_addr, int origin_count,
 MPI_Datatype origin_type, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_type, MPI_Win win)

 MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_TYPE,
 TARGET_RANK, TARGET_DISP, TARGET_COUNT,
 TARGET_TYPE, WIN, IERROR)
 <type> :: ORIGIN_ADDR(*)
 INTEGER :: ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,
 TARGET_COUNT, TARGET_TYPE, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: TARGET_DISP

  Transfer origin target
  No matching call on target side

July 9, 2014 Slide 133

MPI RMA operation accumulate

 int MPI_Accumulate(void* origin_addr, int origin_count,
 MPI_Datatype origin_type, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_type, MPI_Op op, MPI_Win win)

 MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_TYPE,
 TARGET_RANK, TARGET_DISP, TARGET_COUNT,
 TARGET_TYPE, OP, WIN, IERROR)
 <type> :: ORIGIN_ADDR(*)
 INTEGER :: ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,
 TARGET_COUNT, TARGET_TYPE, OP, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: TARGET_DISP

July 9, 2014 Slide 134

MPI RMA operation get

 int MPI_Get(void* origin_addr, int origin_count,
 MPI_Datatype origin_type, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_type, MPI_Win win)

 MPI_GET (ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_TYPE,
 TARGET_RANK, TARGET_DISP, TARGET_COUNT,
 TARGET_TYPE, WIN, IERROR)
 <type> :: ORIGIN_ADDR(*)
 INTEGER :: ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,
 TARGET_COUNT, TARGET_TYPE, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: TARGET_DISP

  Transfer target origin
  No matching call on target side

July 9, 2014 Slide 135

 int MPI_Rput(void* origin_addr, int origin_count,
 MPI_Datatype origin_type, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_type, MPI_Win win,
 MPI_Request *req)

Only for passive target
communication

July 9, 2014 Slide 136

July 9, 2014 Slide 137

Synchronization schemes
Active target synchronization (ATC): origin
and target participate equally in synchronizing
the RMA operations.

  Collective synchronization with fence
  General active target synchronization

(GATS)

Passive target synchronization (PTC):
target process is not explicitly taking part in
the synchronization of the accessing RMA
operation.

  Synchronization with locks

sync
sync

access
sync

sync

Task l Task m

lock

access

unlock

Task l Task m

July 9, 2014 Slide 138

ATC: Synchronization with fence

  Collective call on communicator used for window creation
  Contains an implicit barrier
  Data access has to occur between two fence calls
  Written and read data is only accessible after completing

fence
 Local and remote accesses must not occur between

the same fence calls
  Access and exposure epoch matching is done

automatically

sync
sync

access
sync

sync

Task l Task m

July 9, 2014 Slide 139

ATC: Synchronization with fence

 int MPI_Win_fence(int assert, MPI_Win win)

 MPI_WIN_FENCE(ASSERT, WIN, IERROR)
 INTEGER :: ASSERT, WIN, IERROR

sync
sync

access
sync

sync

Task l Task m

July 9, 2014 Slide 140

ATC: General active target
synchronization (GATS) sync

sync
access

sync
sync

Task l Task m

July 9, 2014 Slide 141

GATS: Access epoch

 int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)
 int MPI_Win_complete(MPI_Win win)

 MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)
 INTEGER :: GROUP, ASSERT, WIN, IERROR
 MPI_WIN_COMPLETE(WIN, IERROR)
 INTEGER :: WIN, IERROR

July 9, 2014 Slide 142

GATS: Exposure epoch

 int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)
 int MPI_Win_wait(MPI_Win win)

 MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
 INTEGER :: GROUP, ASSERT, WIN, IERROR
 MPI_WIN_WAIT(WIN, IERROR)
 INTEGER :: WIN, IERROR

July 9, 2014 Slide 143

PTC: General remarks lock

access

unlock

Task l Task m

July 9, 2014 Slide 144

PTC: Lock and Unlock

 int MPI_Win_lock(int lock_type, int rank, int assert,
 MPI_Win win)
 int MPI_Win_unlock(int rank, MPI_Win win)

 MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
 INTEGER :: LOCK_TYPE, RANK, GROUP, ASSERT, WIN, IERROR
 MPI_WIN_UNLOCK(RANK, WIN, IERROR)
 INTEGER :: RANK, WIN, IERROR

lock

access

unlock

Task l Task m

July 9, 2014 Slide 145

PTC: Lock_all and Unlock_all

 int MPI_Win_lock_all(int assert, MPI_Win win)
 int MPI_Win_unlock_all(MPI_Win win)

 MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR)
 INTEGER :: ASSERT, WIN, IERROR
 MPI_WIN_UNLOCK_ALL(WIN, IERROR)
 INTEGER :: RANK, WIN, IERROR

lock

access

unlock

Task l Task m

July 9, 2014 Slide 146

PTC: Flush

 int MPI_Win_flush (int rank, MPI_Win win)
 int MPI_Win_flush_all(MPI_Win win)

 MPI_WIN_FLUSH(RANK, WIN, IERROR)
 INTEGER :: RANK, WIN, IERROR
 MPI_WIN_FLUSH_ALL(WIN, IERROR)
 INTEGER :: RANK, WIN, IERROR

lock

access

unlock

Task l Task m

July 9, 2014 Slide 147

Adding/retrieving Information about Windows

July 9, 2014 Slide 148

Further/Advanced MPI topics

July 9, 2014 Slide 149

Summary

In this talk we discussed
  Hard- and software concepts
  A concept for design of parallel programs
  Basics of MPI and selected topics

To design and write parallel code with MPI: think!
  Analyze you algorithm
  What hardware the code should run on?
  What is already available (algorithms, libraries, …)?

July 9, 2014 Slide 150

Summary

When using MPI
  Avoid communication if possible
  Use as few resources as possible
  Provide as much information to MPI as possible
  Give MPI the freedom to optimize
  Check the MPI environment on the target system

 Message transfer protocol (eager limit)
  Switch for asynchronous communication

July 9, 2014 Slide 151

Summary

To optimize parallel code

 See the next talk

July 9, 2014 Slide 152

References and Literature

[EG10] Edgar Gabriel, Introduction to MPI IV –MPI derived datatypes, Lecture COSC 4397
Parallel Computation, University of Houston (2010).

[IF95] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Reading, MA: Addison-Wesley, 1995.
http://www.mcs.anl.gov/~itf/dbpp/

[MJQ04] M. J. Quinn. Parallel Programming in C with MPI and OpenMP, New York, NY: Mc
Graw Hill, 2004.

[MPI] The MPI Forum. MPI: A Message-Passing Interface Standard, Version 3.0 (2012).
http://www.mpi-forum.org/

[RR] Rolf Rabenseifner, Optimization of MPI Applications, University of Stuttgart High-
Performance Computing-Center Stuttgart (HLRS)

[WG99] W. Gropp, E. Lusk, A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface, 2nd ed., MIT Press, Cambridge (1999).

[WG99a] W. Gropp, E. Lusk, R. Thakur. Using MPI-2: Advanced Features of the Message-
Passing Interface, MIT Press, Cambridge (1999).

[WG05] William Gropp, Rusty Lusk, Rob Ross, and Rajeev Thakur, Advanced MPI: I/O and
One-Sided Communication, Presentation at the SC2005 (2005) .
http://www.mcs.anl.gov/research/projects/mpi/tutorial/advmpi/sc2005-advmpi.pdf

July 9, 2014 Slide 153

Thanks!

