
INTRODUCTION TO
PERFORMANCE

ANALYSIS

Andres S. CHARIF-RUBIAL

William Jalby

Overview

1. The stage/actors/trends

2. Measurement Techniques

3. Limitations of existing tools

4. A case study

3

Abstraction Layers in Modern Systems

Programming Language

Gates/Register-Transfer Level (RTL)

Algorithm/Libraries

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Compilers/Interpreters

Circuits

Physics

Application

CS

EE

4

OUR OBJECTIVE/POSITIONNING

Algorithm/Libraries

Microarchitecture

Application

Understand the

relationship/interaction

between Architecture

Microarchitecture and

Applications/Algorithms

We have to take into

account the

intermediate layers

Don’t forget also the lowest

layers

KEY TECHNOLOGIES:

- Performance

Measurement and

Analysis

- Compilers

Recent Trends in Computer architecture

• More complex cores: FMA (Fused Multiply Add), wider and
more complex vector instructions

• More complex memory hierarchies: multiple levels, multiple
hardware prefetch mechanisms,….

• Increase in parallelism: Many core, GPU,

5

INTEL Processors Roadmap

Tick Tock model

Tick = shrink of an existing micro architecture

Tock = new micro architecture using existing IC process

Nehalem new micro arch 45 nm Tera 100

Westmere new process 32 nm

Sandy Bridge new micro arch 32 nm Curie

Ivy Bridge new process 22 nm

Haswell new micro arch 22 nm Tera 1000 ??

Broadwell new process 14 nm

Juillet 2013 6
CEA, DAM, DIF, F-91197

Arpajon | Page

Haswell

~140W

≥ 440 Gflops

AVX2 (FMA + gather)

22nm

7

Vector Width: Evolution

Année Registres Nom

~1997 80-bit MMX

~1999 128-bit SSE1

~2001 128-bit SSE2

~2010 256-bit AVX

~2012 512-bit ABRni (KNC)

~2014 256-bit AVX2 (Haswell)

8

MMX = Multi Media eXtension

SSE = Streaming SIMD Extension

Register Organization: SSE/AVX/MIC

511 255 127 0

DP 1 DP 0 2DP
FP

SSE

SP 3 SP2 SP 1 SP 0 4SP
FP

DP3 DP2 DP 1 DP 0 4DP
FP

AVX
256

SP 7 SP 6 SP 5 SP 4 SP 3 SP 2 SP 1 SP 0 8SP
FP

DP 7 … DP 3 DP 2 DP 1 DP 0 8DP
FP

MIC
512

SP 15 SP 14 … SP 7 SP 6 SP 5 SP 4 SP 3 SP 2 SP 1 SP 0 16SP
FP

9

Xeon Phi Architecture (KNC)

61 cores, 4 threads per core

10

George Chrysos

Xeon Phi Core: detailed view

Architecture in order (old P45 cf. Pentium Pro).

Next generations will be « out of order » / on socket

Les prochaines générations (KNx) seront out of
order (Atom)

11

The GPU path

NVIDIA Kepler 2

960DP + 2880 SP cores ~1.5TFlops DP

7.1 B transistors

<300W

GCdV 12

Standard goals for Performance Analysis

• For a given architecture and application, improve application
performance: tune performance and/or change algorithms.

• For a given set of applications, try to determine best
architecture including its variants (cache size, memory/core
organization etc …)

• For Computing Center managers, optimize resource usage

• For hardware/system designers, understand bottlenecks on
current architectures and derive guidelines for next
generation

• NEW: For a given architecture and application, improve its
energy consumption

13

 Inter-Node

 Node

 Sockets

 Core level

 SIMD: data //

 ILP: instruction level //

 Remote memory

 Remote cache

Analysis levels

Performance tuning curve

Effort

M
a
rg

in
a
l

P
e
rf

o
rm

a
n
c
e

G
a
in

Application

Insight

Application

+ Arch

Insight

Microarchitectural

Insight

CHOOSE RIGHT

ALGORITHM CLASS

Parallelism: 1000X

TUNE TO GLOBAL

ARCHITECTURE

CHARACTERISTICS

Optimize communication: 10X

Vectorize: 2X to 8X

TUNE TO LOW LEVEL

ARCHITECTURE

CHARACTERISTICS

Optimize cache usage: 2X to

10X

Optimize unicore execution:

1,2 X to 3X

Performance Tuning

• Generally a multifaceted problem

 Maximizing the number of views

• Identify clearly performance issues:

 Where ?? source code fragment (ideally a few
statements)

 Who ?? algorithm, compiler, OS, hardware

 How much ?? exact cost of performance issues

• Three solution techniques

 Analytical models

 Simulation

 Measurements

16

?

Analytical Models
Mathematical equations describing system (or more likely

subsystem) performance in function of key parameters

Allows to exactly capture impact of parameters and ideal
for performance tuning

Fast

Requires very strong simplifying assumptions to remain
tractable/usable: low accuracy

Has to be validated/calibrated against
simulation/experiment

• Exemples

 Amdahl’s law (estimate performance gain)

17

Simulation
Software tool modeling hardware behavior of system or

subsystem

Explicit direct relation between hardware and software

Slow: accuracy versus speed trade off (OS impact often
not taken into account)

Has to validated/calibrated against experiment

To be accurate requires deep knowledge on target
architecture

• Examples

 Cache simulators: good tool to apprehend program
temporal locality

18

Measurements
Direct measurement of running programs

Excellent accuracy (if measurements done correctly):
everything taken into account, no simplifying
assumption: IDEAL

Fast (not so fast if good measurement methodology is
used)

Difficult to vary parameters

Difficult separate parameters impact (aggregate effect)

• Examples

 Analytical models built using measurement
(microbenchmarks)

19

Metrics

• What can be measured:

 Counts of a given hardware event occurrences: cache
miss, instruction stalls, etc …

 Time: time interval

 Values: value profiling: stride of memory access, loop
length, message size etc ….

• Difficulties:

 Accuracy

 Correlation with source code: aggregate values (total
number of cache misses for the whole loop not for
individual statements)

20

TIME

• Wall clock time: it includes everything: I/O, system etc …..
Including other programs running simultaneously but it
corresponds to response time

• CPU Time:

 Time spent by CPU to execute programs

 Real target

• How to measure time ?? recommendation use RDTSC: Read
Time Stamp Counter (assembly instruction with good
accuracy). However small durations (less than 100 cycles are
extremely difficult to measure if not impossible)

21

Derived Metrics

• Rates: obtained by dividing number of occurrences by time

 GIPS Billions of Instructions per second

 GFLOPS Billions of Floating point instructions per
second

 MBYTE/s number of Mbytes per second (useful for
characterizing stress on various memory levels)

 THROUGHPUT: how many job instances executed per
second

• Rates are useful to assess how well some hardware parts are
used.

• A useful derived metric: SPEEDUP: T1/Tp Where T1 (resp. Tp
execution time on 1 (resp. p) core(s).

22

How to perform measurements ??

• How to trigger measurements ??

 Hardware Driven: sampling, counting

 Code Driven: tracing

• For tracing, how to insert probes ??

 Level: source, library ,binary

 Instrumentation: static/dynamic

• Three key questions:

 How much perturbation is introduced ??

 How to correlate with source ??

 How to Record/Display information??

23

Sampling (1)

• OPERATION MODE (hardware driven):

1. Focus on a given hardware event: clock ticks, FP
operations, cache miss,

2. At each event occurrence, counter is incremented

3. When threshold is reached (counter overflow), interrupt
occurs and counter reset to 0

• What happens on interrupt ??

 Record instruction pointer and charge the whole
occurrences count to that IP

 Advanced mechanism on INTEL processors: PEBS (Precise
Event Based Sampling): record processor state (register
values etc …)

24

Sampling (2)

KEY PRINCIPLE: general statistical measurement techniques
relying on the assumption that a subset of the population
being monitored is representative of the whole population

• CORRELATION WITH SOURCE CODE:

 Function level, Basic Block Level, Loop level but NOT AT
THE INSTRUCTION LEVEL (reasonably)

 IP is not enough, whole call stack is needed which is not
easy 

 Inclusive Versus Exclusive issue

 Call site issue

EXCELLENT EXAMPLE: XE Amplifier (VTUNE/PTU) : INTEL

25

Inclusive versus Exclusive

Subroutine toto1 (…..)

Basic Block 1 (BB1)

Call toto2

Basic Block 2 (BB2)

Return

Toto2 is leaf in the call
graph

INCLUSIVE TIME:

Tinc = T(BB1) + T(toto2) +
T(BB2)

EXCLUSIVE TIME

Texc = T(BB1) + T(BB2)

Exclusive time is easy but
Inclusive time needs call
stack

26

Issue with call sites
Subroutine toto1

……

call toto2 (4)

…….

call toto2 (10000)

……

Return

Usually, all of the counts
relative to the different

occurrences of toto2 will
be lumped together: bad
correlation with source

code.

TRICK: use toto2short and
toto2long to distinguish
the two!!

27

SAMPLING: pros and cons

PROS

•Binary used as is (no
recompile/no
modifications)

•User transparent

•Low overhead if sampling
period is large

•PEBS offers very
interesting opportunities
(whole processor state)

CONS

•Accuracy

•Correlation with source
code

•Difficult to assert its
quality

28

TRACING

• OPERATION MODE (code driven):

1. Insert probes (source/library/binary, static/binary) at point
of interest (POI)

2. Measurement performed when probe is executed

3. Record tracing event/build trace

• Trace formats

 VTF : Vampir Trace Format

 OTF1/2: Open Trace Format

 …

29

Instrumentation: Probe Insertion

• Source level: e.g. TAU source code instrumenter

• Library level: e.g. PMPI

• Binary level: e.g. MAQAO/MIL

• Probe Insertion

 Manual: tedious, error prone

 Automatic: preprocessor, binary rewrite: Might be difficult
to select meaningful POI.

 Automatic by compiler: specification can be done at source
level but instrumentation done by compiler: INTEL IFC/ICC
12.0

30

Source Instrumentation Issue

DO I = 1, 200

DO J = 1, 1000

……

ENDDO

ENDDO

Loop Interchange can be
performed by compiler

DO I = 1, 200

Start Clock

DO J = 1, 1000

……

ENDDO

Stop Clock

ENDDO

Loop interchange no
longer possible!!

31

Source Instrumentation: Pros and Cons

PROS

•Portable

•Good correlation with
source code

CONS

•Needs recompile

•Interaction with compiler

•Difficult interaction with
high level abstractions
(C++)

•Requires access to source
code

32

Binary Instrumentation: Pros and Cons

PROS

•No recompile

•Instrument the real target
code

•No need to access source
code

•Lowest overhead possible

•OK correlation with simple
source code constructs.

CONS

•Not portable

•Need access to
specialized tooling
(disassembler)

•Might be difficult to
correlate with High Level
abstractions in source
code (C++)

33

Tracing: pros and cons

PROS

•Excellent correlation with
source code

•Excellent accuracy

•Traces preserve temporal
and spatial relationships
between events

•Allows reconstruction of
dynamic behavior

•Most general technique

CONS

•Traces can be huge

•How to select POI and
events to be measured a
priori ??

•Writing large trace files
can induce measurement
perturbation

•Aggregate view at loop
level at best

34

Context of Performance analysis

Hardware architectures are becoming increasingly complex

Complex CPU: out of order, vector instructions

Complex memory systems: multiple levels including NUMA,
prefetch mechanisms

Multicore introduces new specific problems, shared/private
caches, contention, coherency

Each of these hardware mechanisms introduce performance
improvement but to work properly, they require specific
code properties

Performance pathologies: situations potentially inducing
performance loss: hardware poor utilization

Individual performance pathologies are numerous but finite

35

Introduction
(usual performance pathologies)

36

Pathologies Issues Work-around

ADD/MUL
balance

ADD/MUL parallel execution
(of FMA) underused

Loop fusion, code rewriting e.g.
Use distributivity

Non pipelined
execution
units

Presence of non pipelined
instructions: DIV, SQRT

Loop hoisting, rewriting code
to use other instructions eg.
x86: div and sqrt

Vectorization

Unvectorized loop Use another compiler, check
option driving vectorization,
use pragmas to help compiler,
manual source rewriting

Complex CFG
in innermost
loops

Prevents vectorization
Loop hoisting or code
specialization

Introduction
(usual performance pathologies)

37

Pathologies Issues Work-around

Unaligned
memory
access

Presence of vector-unaligned
load/store instructions

Data padding, use pragma
and/or attributes to force the
compiler

Bad spatial
locality and/or
non stride 1

Loss of bandwidth and cache
space

Rearrange data structures or
loop interchange

Bad temporal
locality

Loss of perf. due to avoidable
capacity misses

Loop blocking or data
restructuring

4K aliasing
Unneeded serialization of
memory accesses

Adding offset during
allocation, data padding

Associativity
conflict

Loss of performance due to
avoidable conflict misses

Loop distribution, rearrange
data structures

Introduction
(usual performance pathologies)

38

Pathologies Issues Work-around

False sharing
Loss of BW due to coherence
traffic and higher latency access

Data padding or rearrange data
structures

Cache
leaking

Loss of BW and cache space
due to poor physical-virtual
mapping

Use bigger pages, blocking

Load
unbalance

Loss of parallel perf. due to
waiting nodes

Balance work among threads or
remove unnecessary lock

Bad affinity
Loss of parallel perf. due to
conflict for shared resources

Use numactl to pin threads on
physical CPUs

Analysis of current tool set (1)

Lack of global and accurate view: no indication of
performance loss (or alternatively ROI)
Performance pathologies in general but no hint provided on

performance impact (cf VTUNE with performance events): we
do not know the pay off if a given pathology is corrected

Worse, the lack of global view can lead you to useless
optimization: for example, for a loop nest exhibiting a high miss
rate combined with div/sqrt operations, it might be useless to
fix the miss rate if the dominating bottleneck is FP operations.

Source code correlation is not very accurate: for example with
VTUNE relying on sampling, some correlation might be
exhibited but it is subject to sampling quality and out of order
behavior.

39

Analysis of current tool set (2)

Very often, most of the tools rely on a single
technique/approach (simplified view but globally
correct)
Vtune is heavily relying on sampling and hardware

events
Scalasca/vampir is heavily relying on tracing and source

code probe insertion
Sampling aggregates everything together (all instances):

might be counterproductive
In practice, flexibility has to be offered: tracing might be

more efficient than sampling and vice versa.

40

Hardware Performance Counters/Events

• A large number of hardware events (around 1200 on Nehalem
processors) can be counted

• BUT DURING A SINGLE RUN, only 4 to 6 counters are available

• Therefore multiple runs are necessary to gather a good set of
events

• Multiplexing can increase number of events monitored but at
accuracy expense 

• Very precise

• Some nice feature: count number of loads exceeding a given
latency threshold

• REAL GOAL: hardware debugging. SECONDARY GOAL: understand
machine behavior

41

Critics on hardware performance events

• TOO LOW LEVEL: very local view at the hardware level

• NEEDS A DEEP UNDERSTANDING OF MICROARCHITECTURE: no
good documentation available on microarchitecture

• CHANGE FROM ONE PROC GENERATION TO THE NEXT: different
names designate similar events, same names designate different
events

• NEED TO KNOW WHAT TO MONITOR: with 1200 events task is not
easy

• HARD TO QUANTIFY: what is high ??

• ALMOST IMPOSSIBLE TO ACCURATELY CORRELATE WITH SOURCE
CODE

42

(NxN)(NxN) DGEMM L2 Behavior
Itanium IA 64: ATL = Atlas, KNL= UVSQ optimized

DGEMM (NxN) (NxN) L3 Behavior

(NxN) (NxN) DGEMM Performance

Real Performance Analysis issues

Well known/identified

But:

How to find them ?

How much do they cost ?

What to do when multiple pathologies are present ?

Need to quantify/hierarchize them

46

Case Study (1)
POLARIS(MD) Loop

•

47

Example of multi scale problem:
Factor Xa, involved in thrombosis

Anti-Coagulant

(7.46 nm)3

Case Study (2)
Source code and issues

48

6) Vector vs scalar

2) Non-unit stride accesses

4) DIV/SQRT

5) Reductions

Special issues:

Low trip count: from 2 to

2186 at binary level

3) Indirect accesses

Can I detect all these issues with current tools ?
Can I know potential speedup by optimizing them ?

1) High number of

statements

Loop ~10% walltime

Results obtained using

the MAQAO toolsuite and

methodology

Case study
Original code : Dynamic properties (1)

 Trip count: from 1 to 8751 (source iteration count)

 Divide trip count range into 20 equal size interval

49

All iteration counts are equiprobable (probably triangular access)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ROI = FP / LS = 4,1

Imbalance between the two streams => Try to consume more elements

inside one iteration.

Case study
Original code: Dynamic properties (2)

50

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n

Variants

Execution time

Execution time

Case study
Original code: Static properties

 Estimated cycles: 43 (FP = 44)
 Vector efficiency ratio: 25% (4 DP elements can

fit into a 256 bits vector, only 1 is used)
 DIV/SQRT bound + DP elements:

 ~4/8x speedup on a 128/256 bits DIV/SQRT unit (2x
by vectorization + ~2x by reduced latency)

 Sandy/Ivy Bridge: still 128 bits
 => First optimization = VECTORIZATION

51

Case study
Vectorization

 Using SIMD directive
 Two binary loops

 Main (packed instructions, 4 elements per iteration)
 Tail (scalar instructions, 1 element per iteration)

52

ROI = FP / LS = 2,07 - Initial ROI was at 4,1

removing loads/stores provides a speedup much more smaller than removing

arithmetical instructions => focus on them

Case study
Dynamic properties after vectorization

53

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

Original_NSD: removing DIV/SQRT instructions provides a 2x speedup

=> the bottleneck is the presence of these DIV/SQRT instructions

FP_NSD: removing loads/stores after DIV/SQRT provides a small additional speedup:

next bottleneck

Conclusion: No space for improvement here (algorithm bound)

DIV/SQRT

instructions

removed

Loads/stores

+ DIV/SQRT

instructions

removed

Case study
Dynamic properties after vectorization

54

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS REF_NSD FPIS_NSD

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

Case study
Static properties after vectorization

 Vectorization ratio
 100% FP arithmetical instructions
 65% loads

 Strided + indirect accesses
 SCATTER/GATHER not available on Sandy/Ivy Bridge.

 Vector efficiency ratio (vector length usage)
 100% FP arithmetical instructions (but 128 bits

DIV/SQRT unit)
 43% loads (cannot use vector-aligned loads)
 25% stores (cannot use vector-aligned stores)

55

Case study
Static properties after vectorization

 Vectorization overhead: (n/4) x 87 cycles in the
main loop vs (n%4) x 43 in the tail loop

56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ef
fi

ci
e

n
cy

Source loop trip count

Evolution of throughput with source
loop trip count

With 27 iterations, 10%
of time lost due to 3
iterations in the tail
loop

Our Objectives
Techniques & Modeling

Get a global hierarchical view of performance
pathologies/bottleneck

Estimate the performance impact of a given
performance pathology while taking into account
all of the other pathologies present

Use different tools for pathology detection and
pathology analysis

Perform a hierarchical exploration of bottlenecks: the
more precise but expensive tools are only used on a
specific well chosen cases

57

THE 4 KEY ROADBLOCKS

• Algorithm

• Compiler

• OS

• Hardware

58

Acknowledgements

Material of these slides were produced in part
by ECR Performance Evaluation team and UVSQ
PerfCloud team (A. Charif Rubial, E. Oseret, Z.
Bendifallah, J. Noudohouenou, V. Palomares)

Some slides were borrowed from G. Colin de
Verdieres

59

60

Thanks for your attention !

Questions ?

