Numerical validation using the CADNA library
practical work

F. Jézéquel, J.-L. Lamotte
LIP6 Laboratory, P. and M. Curie University,
Paris, France
Fabienne.Jezequel@lip6.fr, Jean-Luc.Lamotte@lip6.fr

February 28, 2013
Contents

1 Getting started

2 Exercises
  2.1 Exercise 1 ................................................................. 3
  2.2 Exercise 2 ................................................................. 3
  2.3 Exercise 3 ................................................................. 4
  2.4 Exercise 4 ................................................................. 4
  2.5 Exercise 5 ................................................................. 5
  2.6 Exercise 6 ................................................................. 5
  2.7 Exercise 7 ................................................................. 5

3 User’s guide
  3.1 Declaration of the CADNA library .................................. 7
  3.2 Initialization and termination of the CADNA library ............ 7
  3.3 Declaration of variables ................................................. 7
  3.4 Changes in assignments or arithmetic operations ................ 8
  3.5 Changes in reading statements ....................................... 8
  3.6 Changes in printing statements ....................................... 9
  3.7 Constants passed as function arguments ........................... 9
  3.8 A example of numerical code and its modified version ........ 9
  3.9 Numerical debugging with CADNA ................................. 12
Chapter 1

Getting started

Download the CADNA library.
Compile and install the library on your home directory.
The installation procedure may be for instance:

```bash
gunzip cadna_c-1.1.7.tar.gz
tar -xvf cadna_c-1.1.7.tar
cd cadna_c-1.1.7
./configure --prefix='pwd' --enable-64bit
make
make install
```
Chapter 2

Exercises

2.1 Exercise 1

This example has been proposed by S. Rump.

Computation of:

\[ f(x, y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y} \]

is computed with \( x = 77617 \), \( y = 33096 \). The 15 first digits of the exact result are -0.827396059946821.

2.1.1 Question 1

Compile and run the \texttt{rump.c} C program:

\texttt{make rump}
\texttt{./rump}

Copy it into the \texttt{rumpd.c} program.
Change the type variable type from float to double in the \texttt{rumpd.c} program.

Compile and run the \texttt{rumpd.c} C program:

\texttt{make rumpd}
\texttt{./rumpd}

2.1.2 Question 2

Implement the CADNA library in the \texttt{rump.c} and \texttt{rumpd.c} programs by creating two new programs called \texttt{rump_cad.cc} and \texttt{rumpd_cad.cc}.
Run the \texttt{rump_cad.cc} and the \texttt{rumpd_cad.cc} program.

2.2 Exercise 2

The determinant of Hilbert’s matrix of size 11 is computed using Gaussian elimination without pivoting strategy. The determinant is the product of the different pivots. Hilbert’s matrix is defined by: \( a(i, j) = 1/(i + j - 1) \). All the pivots and the determinant are printed out.

2.2.1 Question 1

Run the \texttt{hilbert.c} C program.
What do you think about the determinant value?
The exact value of the determinant is \( 3.0190953344493 \times 10^{-65} \).
2.2.2 Question 2
Implement the CADNA library in the hilbert.c program by creating a new program called hilbert_cad.cc.
Run the hilbert_cad.cc program.

2.3 Exercise 3
This example has been proposed by J.-M. Muller.
The muller.c program computes the first 25 iterations of the following sequence:
\[ U_n = 111 + \frac{1130}{U_{n-1}} + \frac{3000}{U_{n-1}U_n} \]
with \( U_0 = 5.5 \) and \( U_1 = \frac{61}{11} \).

2.3.1 Question 1
Run the muller.c C program.
What is the sequence limit?

2.3.2 Question 2
Implement the CADNA library in the muller.c program by creating a new program called muller_cad.cc.
Run the program.
Is the result correct? Why?
Launch the program with the gdb debugger:
```
gdb muller_cad
```
Set a break on the instability function (using the break instability command with gdb).
Run the program (using the run command with gdb).
What happens?
Use twice the up command with gdb.
Give the value of i, a and b (using the print command with gdb).
Continue the run (using the cont command with gdb).
To quit the debugger, use the quit command.

2.4 Exercise 4
This example deals with the improvement and optimization of an iterative algorithm by using new tools which are contained in CADNA. This program computes a root of the polynomial
\[ f(x) = 1.47x^3 + 1.19x^2 - 1.83x + 0.45 \]
by Newton’s method. The sequence is initialized with \( x = 0.5 \).
The iterative algorithm \( x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \) is stopped with the criterion
\[ |x_n - x_{n-1}| < 10^{-12}. \]

2.4.1 Question 1
Run the newton.c program.
What is the sequence limit?
How many iterations are computed?
2.4.2 Question 2
Implement the CADNA library in the newton.c program by creating a new program called newton1_cad.cc. Run the program. How many iterations are computed?
Look at the CADNA report.

With the debugger, find the unstable division.
Why does an unstable division appear?
Change the stopping criteria to x==y. How many iterations are computed?

2.5 Exercise 5
The following linear system is solved using Gaussian elimination with partial pivoting. The system is

\[
\begin{pmatrix}
21 & 130 & 0 & 2.1 \\
13 & 80 & 4.74 \times 10^8 & 752 \\
0 & -0.4 & 3.9816 \times 10^8 & 4.2 \\
0 & 0 & 1.7 & 9 \times 10^{-9}
\end{pmatrix}
\cdot X =
\begin{pmatrix}
153.1 \\
849.74 \\
7.7816 \\
2.6 \times 10^{-8}
\end{pmatrix}
\]

The exact solution is \( x_{\text{sol}} = (1, 1, 10^{-8}, 1) \).

2.5.1 Question 1
Run the gauss.c program.
Are the results correct?

2.5.2 Question 2
Implement the CADNA library in the gauss.c program by creating a new program called gauss_cad.cc. Run the program.
With the debugger, find where the instabilities appear.
Print the values \( a[2][2] \) and \( a[3][2] \) in the gauss_cad.cc program.
Do the same in the gauss.c program.

2.6 Exercise 6
The jacobi.c program implements Jacobi iteration to find the solution of a linear system.

2.6.1 Question 1
Run the jacobi.c program.
Are the results correct?
How many iterations are performed?
Try other values for \( \varepsilon \).

2.6.2 Question 2
Implement the CADNA library in the jacobi.c program by creating a new program called jacobi_cad.cc. Run the program.
Change the stopping criterion.

2.7 Exercise 7
Let us consider the logistic iteration defined by \( x_{n+1} = ax_n(1 - x_n) \) with \( a > 0 \) and \( 0 < x_0 < 1 \).
As a remark, a mathematically equivalent sequence is: \( x_{n+1} = -a(x_n - \frac{1}{2})^2 + \frac{a}{4} \).
2.7.1 Question 1

Run the logistic.c program which computes the logistic iteration.
In the program both sequence expressions are given.

2.7.2 Question 2

Implement the CADNA library in the logistic.c program by creating a new program called logistic_cad.cc.
Run the program.
Change the stopping criterion in order to avoid useless iterations.
Chapter 3

User’s guide

The use of the CADNA library involves seven steps:

- declaration of the CADNA library for the compiler,
- initialization of the CADNA library,
- substitution of the type float or double by stochastic types in variable declarations,
- possible changes in the input data if perturbation is desired, to take into account uncertainty in initial values,
- change of output statements to print stochastic results with their accuracy,
- possible use of CADNA functions to evaluate the number of exact significant digits,
- termination of the CADNA library.

The reader may refer to the sample program given in 3.8 with two versions, i.e. the initial C code and the code modified to be compiled with the CADNA library.

3.1 Declaration of the CADNA library

The following pseudo-statement

```c
#include <cadna.h>
```

must take place in any file which contains declarations of stochastic variables or CADNA functions to be found by the compiler.

3.2 Initialization and termination of the CADNA library

The call to the `cadna_init` function must be added just after the **main program declaration statements** to initialize random arithmetic.

The call to the `cadna_end` function must be the last executed program statement.

3.3 Declaration of variables

3.3.1 Changes in the type of variables

To control the numerical quality of a variable, just replace its standard type by the associated stochastic type.

Example:
3.4 Changes in assignments or arithmetic operations

3.4.1 Conversions between usual types and stochastic types

In assignment statements, conversions are implicit from C float, int or double types to and from stochastic types (because the = operator has been overloaded), but for conversions from stochastic types to standard types, the knowledge of accuracy is lost.

With the following declarations:

```c
float st a, b;
float r;
```

the assignments `a = r;`, `b = 2;` and `r = a;` are correct but there is, of course, no information from the accuracy point of view for `r`.

When a variable is set to a value which cannot be exactly coded on computer, the `data_st` method should be used.

Example:

<table>
<thead>
<tr>
<th>Initial C statements</th>
<th>Modified C statements for CADNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>float x, y;</td>
<td><code>#include &lt;cadna.h&gt;</code></td>
</tr>
<tr>
<td><code>x=1.234;</code></td>
<td><code>float_st x, y;</code></td>
</tr>
<tr>
<td><code>y=-3.0;</code></td>
<td><code>x.data_st();</code></td>
</tr>
<tr>
<td><code> </code></td>
<td><code>y=-3.0;</code></td>
</tr>
</tbody>
</table>

3.4.2 Classical arithmetic operators

As previously described, all arithmetic operators on floating-point variables are overloaded and arithmetic expressions without functions do not have to be modified. Expressions may contain a mixture of stochastic types, classical types and integer types.

With the following declarations:

```c
float_st a, b;
double_st c;
```

the statement `c = a * a + b * 3;` needs no change.

The result of expressions containing stochastic terms will be of stochastic type. As for classical types, `double_st` prevails over `float_st`.

So with the previous declarations, `c = a * c + b * 3;` needs no change.

3.5 Changes in reading statements

The family of `scanf` functions is adapted to classical floating-point variables, which must be transformed into stochastic variables.

Example:
3.6 Changes in printing statements

Before printing each stochastic variable, it must be transformed into a string by the str or strp function. The required length is 15 for a float_st variable and 25 for a double_st variable. Therefore formats should be modified.

For example, if a float variable x becomes a float_st variable, the printing instruction can be modified as follows:

<table>
<thead>
<tr>
<th>Initial C statements</th>
<th>Modified C statements for CADNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>float x;</td>
<td>#include &lt;cadna.h&gt;</td>
</tr>
<tr>
<td></td>
<td>float xaux;</td>
</tr>
<tr>
<td></td>
<td>float_st x;</td>
</tr>
<tr>
<td></td>
<td>.....</td>
</tr>
<tr>
<td></td>
<td>scanf(&quot;x = %14.7e \n&quot;, &amp;x);</td>
</tr>
<tr>
<td></td>
<td>x = xaux;</td>
</tr>
<tr>
<td>scanf(&quot;x = %14.7e \n&quot;, &amp;xaux);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x = xaux;</td>
</tr>
</tbody>
</table>

3.7 Constants passed as function arguments

Function definitions and function calls must sometimes be adapted because stochastic parameters of functions must not be passed by value.

Example:

<table>
<thead>
<tr>
<th>Initial C statements</th>
<th>Modified C statements for CADNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>float a;</td>
<td>#include &lt;cadna.h&gt;</td>
</tr>
<tr>
<td>a=3.14*f(2.0);</td>
<td>float_st aux, a;</td>
</tr>
<tr>
<td></td>
<td>aux=2.0;</td>
</tr>
<tr>
<td></td>
<td>a=3.14*f(aux);</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>float f(x)</td>
<td>float_st f(x)</td>
</tr>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>float x;</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

3.8 A example of numerical code and its modified version

The following source codes use the Gauss-Jordan method to invert a matrix.

3.8.1 Standard C source code

#include <stdio.h>
#define N 4
void InitMat(float M[N][N])
{
    int i, j;
    for(i=0; i<N; i++)
        for(j=0; j<N; j++) scanf("%e", &M[i][j]);
}

void InvertMat(float M[N][N])
{
    int i, j, k;
    float temp;
    for(k=0; k<N; k++)
    {
        temp = M[k][k];
        M[k][k] = 1.0;
        for(j=0; j<N; j++) M[k][j] /= temp;
        for(i=0; i<N; i++)
            if(i != k)
                {temp = M[i][k];
                M[i][k] = 0.0;
                for(j=0; j<N; j++) M[i][j] -= temp * M[k][j];
            }
    }
}

void DisplayMat(float M[N][N])
{
    int i, j;
    for(i=0; i<N; i++)
        for(j=0; j<N; j++)
            printf("%14.7e ", M[i][j]);
        printf("n");
}

void main()
{
    float M[N][N];
    printf("Initial matrix:\n");
    InitMat(M);
    DisplayMat(M);
    InvertMat(M);
    printf("Inverted matrix:\n");
    DisplayMat(M);
}

3.8.2 Source code using the CADNA library
#include <cadna.h>
#include <stdio.h>
#define N 4

void InitMat(float_st M[N][N])
{float aux;
 int i, j;
 for(i=0; i<N; i++)
     for(j=0; j<N; j++) {scanf("%e", &aux); M[i][j] = aux;}

// Inversion using the Gauss-Jordan method:
void InvertMat(float_st M[N][N])
{
    int i,j,k;
    float_st temp;
    for(k=0;k<N;k++)
    {
        temp = M[k][k];
        M[k][k] = 1.0;
        for(j=0;j<N;j++) M[k][j]/=temp;
        for(i=0;i<N;i++)
            if(i!=k)
                {temp=M[i][k];
                 M[i][k]=0.0;
                 for(j=0;j<N;j++) M[i][j] = M[i][j] - temp*M[k][j];
            }
    }

    // Display of a matrix:
    void DisplayMat(float_st M[N][N])
    {
        int i,j;
        for(i=0;i<N;i++)
            {for(j=0;j<N;j++)
                printf("%s ",strp(M[i][j]));
                printf("\n");
            }
    }

    void main()
    {cadna_init(-1);
     float_st M[N][N];
     printf("Initial matrix:\n");
     InitMat(M);
     DisplayMat(M);
     InvertMat(M);
     printf("Inverted matrix:\n");
     DisplayMat(M);
     cadna_end();
    }

3.8.3 Example of execution without CADNA

Initial matrix:
1.0000000e+00 2.0000000e+03 5.0000000e-01 4.0000000e+00
2.9999999e-05 1.0000000e+00 2.0000000e+00 8.0000000e+00
4.0000000e+00 5.0000000e-01 2.9999999e-08 2.0000000e+00
2.0000000e+00 3.0000000e+00 5.0000000e-01 5.0000000e+09

Inverted matrix:
5.0009380e-04 -1.2504448e-04 -1.2502252e-04 -1.4995290e-13
-2.5004597e-04 5.0006253e-01 5.8761423e-05 -7.9992352e-10
-2.4999515e-13 -4.9991469e-11 -9.9937121e-11 2.0000000e-10
3.8.4 Example of execution with CADNA

Initial matrix:
\[
\begin{bmatrix}
0.1000000E+01 & 0.1999999E+04 & 0.5000000E+00 & 0.4000000E+01 \\
0.2999999E-04 & 0.1000000E+01 & 0.2000000E+01 & 0.8000000E+01 \\
0.4000000E+01 & 0.5000000E+00 & 0.2999999E-07 & 0.2000000E+01 \\
0.2000000E+01 & 0.3000000E+01 & 0.5000000E+00 & 0.5000000E+10
\end{bmatrix}
\]

Inverted matrix:
\[
\begin{bmatrix}
-0.62E-04 & 0 & 0.250015E+00 & -0.10E-09 \\
0.5000938E-03 & -0.124E-03 & -0.1250225E-03 & -0.14E-12 \\
-0.250045E-03 & 0.500062E+00 & 0.5876140E-04 & -0.799923E-09 \\
-0.250E-12 & -0.49E-10 & -0.999371E-10 & 0.2000000E-09
\end{bmatrix}
\]

3.9 Numerical debugging with CADNA

One can enable the detection of the following instabilities:

- UNSTABLE DIVISION(S),
- UNSTABLE POWER FUNCTION(S),
- UNSTABLE MULTIPLICATION(S),
- UNSTABLE BRANCHING(S),
- UNSTABLE MATHEMATICAL FUNCTION(S),
- UNSTABLE INTRINSIC FUNCTION(S),
- LOSS OF ACCURACY DUE TO CANCELLATION(S).

The library counts the number of detections for each instability. The global information for these detections is printed out with the `cadna_end` function.

The accuracy estimated by CADNA is valid if there is no deep numerical anomaly during the computation, i.e. no UNSTABLE DIVISION, UNSTABLE POWER FUNCTION and UNSTABLE MULTIPLICATION.

The meaning of the message is:

- **unstable division**: the divisor is non-significant
- **unstable power function**: one operand of the power function is non-significant
- **unstable multiplication**: both operands are non-significant
- **unstable branching**: the difference between the two operands is non-significant (a computational zero).

The chosen branching statement is associated with the equality.

- **unstable mathematical function**:
  in the `log`, `sqrt`, `exp` or `log10` function, the argument is non-significant.

- **unstable intrinsic function**:
  - when using integer cast functions, the integral part of the argument can not be exactly determined due to the round-off error propagation;
  - in the `fabs` function: the argument is non-significant;
  - the `floor`, `ceil` or `trunc` function returns different values for each component of the stochastic argument.

- **loss of accuracy due to cancellation**: as explained in ??, an unstable cancellation is pointed out when the difference between the number of exact significant digits (i.e. digits which are not affected by round-off errors) of the result of an addition or a subtraction and the minimum of the number of exact significant digits of the two operands is greater than the `cancel_level` argument.

The default value of this argument is 4. In other words, when one loses more than `cancel_level` significant digits in one addition or subtraction, CADNA considers that a catastrophic cancellation has been detected (if the detection of this kind of instability is enabled).
To perform actual numerical debugging, it is necessary, for each instability, to identify the statement in the code that generates this instability. This can be performed directly using a symbolic debugger like **gdb** with Linux or as a background task using special input and output files.

In both cases, one has to put a breakpoint at the entry of the **instability** internal function of the CADNA library. This function is called each time a numerical instability is detected. To get the right label for this system and compiler dependent function, one can use the following statement:

```
  nm name_of_the_binary_code | grep instability
```

For instance, using **gdb** with Linux, the general statement which enables the detection of all the instabilities in a single run is

```
  nohup gdb name_of_the_binary_code < gdb.in >! gdb.out &
```

The **gdb.in** file may contain

```plaintext
  break instability
  run
  while 1
  where
  cont
  end
```

**where** prints out the complete trace of the instability which has stopped the run and **cont** makes the execution going on.

P.S.: **nohup** allows to keep the process alive even when logging off.

The **gdb.out** file will contain all the traces of instabilities.