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Chapter 1

Getting started

Download the CADNA library.
Compile and install the library on your home directory.
The installation procedure may be for instance:

gunzip cadna_c-1.1.7.tar.gz

tar -xvf cadna_c-1.1.7.tar

cd cadna_c-1.1.7

./configure --prefix=‘pwd‘ --enable-64bit

make

make install
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Chapter 2

Exercises

2.1 Exercise 1

This example has been proposed by S. Rump.
Computation of:

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y

is computed with x = 77617, y = 33096. The 15 first digits of the exact result are -0.827396059946821.

2.1.1 Question 1

Compile and run the rump.c C program:

make rump

./rump

Copy it into the rumpd.c program.
Change the type variable type from float to double in the rumpd.c program.
Compile and run the rumpd.c C program:

make rumpd

./rumpd

2.1.2 Question 2

Implement the CADNA library in the rump.c and rumpd.c programs by creating two new programs
called rump cad.cc and rumpd cad.cc.
Run the rump cad.cc and the rumpd cad.cc program.

2.2 Exercise 2

The determinant of Hilbert’s matrix of size 11 is computed using Gaussian elimination without pivoting
strategy. The determinant is the product of the different pivots. Hilbert’s matrix is defined by: a(i, j) =
1/(i + j − 1). All the pivots and the determinant are printed out.

2.2.1 Question 1

Run the hilbert.c C program.
What do you think about the determinant value?
The exact value of the determinant is 3.0190953344493 10−65.
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2.2.2 Question 2

Implement the CADNA library in the hilbert.c program by creating a new program called hilbert cad.cc.
Run the hilbert cad.cc program.

2.3 Exercise 3

This example has been proposed by J.-M. Muller.
The muller.c program computes the first 25 iterations of the following sequence:

Un = 111 +
1130

Un−1
+

3000

Un−1.Un
.

with U0 = 5.5 and U1 =
61

11
.

2.3.1 Question 1

Run the muller.c C program.
What is the sequence limit?

2.3.2 Question 2

Implement the CADNA library in the muller.c program by creating a new program called muller cad.cc.
Run the program.
Is the result correct? Why?

Launch the program with the gdb debugger:

gdb muller_cad

Set a break on the instability function (using the break instability command with gdb).
Run the program (using the run command with gdb).
What happens?
Use twice the up command with gdb.
Give the value of i, a and b (using the print command with gdb).
Continue the run (using the cont command with gdb).
To quit the debugger, use the quit command.

2.4 Exercise 4

This example deals with the improvement and optimization of an iterative algorithm by using new tools
which are contained in CADNA. This program computes a root of the polynomial

f(x) = 1.47x3 + 1.19x2 − 1.83x + 0.45

by Newton’s method. The sequence is initialized with x = 0.5.

The iterative algorithm xn+1 = xn −
f(xn)

f ′(xn)
is stopped with the criterion

|xn − xn−1| < 10−12.

2.4.1 Question 1

Run the newton.c program.
What is the sequence limit?
How many iterations are computed?
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2.4.2 Question 2

Implement the CADNA library in the newton.c program by creating a new program called newton1 cad.cc.
Run the program. How many iterations are computed?
Look at the CADNA report.

With the debugger, find the unstable division.
Why does an unstable division appear?
Change the stopping criteria to x==y. How many iterations are computed?

2.5 Exercise 5

The following linear system is solved using Gaussian elimination with partial pivoting. The system is
21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9

 . X =


153.1
849.74
7.7816

2.6 10−8


The exact solution is xt

sol =
(
1, 1, 10−8, 1

)
.

2.5.1 Question 1

Run the gauss.c program.
Are the results correct?

2.5.2 Question 2

Implement the CADNA library in the gauss.c program by creating a new program called gauss cad.cc.
Run the program.
With the debugger, find where the instabilities appear.
Print the values a[2][2] and a[3][2] in the gauss cad.cc program.
Do the same in the gauss.c program.

2.6 Exercise 6

The jacobi.c program implements Jacobi iteration to find the solution of a linear system.

2.6.1 Question 1

Run the jacobi.c program.
Are the results correct?
How many iterations are performed?
Try other values for ε.

2.6.2 Question 2

Implement the CADNA library in the jacobi.c program by creating a new program called jacobi cad.cc.
Run the program.
Change the stopping criterion.

2.7 Exercise 7

Let us consider the logistic iteration defined by xn+1 = axn(1− xn) with a > 0 and 0 < x0 < 1.
As a remark, a mathematically equivalent sequence is: xn+1 = −a(xn − 1

2 )2 + a
4 .
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2.7.1 Question 1

Run the logistic.c program which computes the logistic iteration.
In the program both sequence expressions are given.

2.7.2 Question 2

Implement the CADNA library in the logistic.c program by creating a new program called logistic cad.cc.
Run the program.
Change the stopping criterion in order to avoid useless iterations.
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Chapter 3

User’s guide

The use of the CADNA library involves seven steps:

• declaration of the CADNA library for the compiler,

• initialization of the CADNA library,

• substitution of the type float or double by stochastic types in variable declarations,

• possible changes in the input data if perturbation is desired, to take into account uncertainty in
initial values,

• change of output statements to print stochastic results with their accuracy,

• possible use of CADNA functions to evaluate the number of exact significant digits,

• termination of the CADNA library.

The reader may refer to the sample program given in 3.8 with two versions, i.e. the initial C code and
the code modified to be compiled with the CADNA library.

3.1 Declaration of the CADNA library

The following pseudo-statement
#include <cadna.h>

must take place in any file which contains declarations of stochastic variables or CADNA functions to
be found by the compiler.

3.2 Initialization and termination of the CADNA library

The call to the cadna init function must be added just after the main program declaration statements
to initialize random arithmetic.
The call to the cadna end function must be the last executed program statement.

3.3 Declaration of variables

3.3.1 Changes in the type of variables

To control the numerical quality of a variable, just replace its standard type by the associated stochastic
type.

Example:
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standard declarations CADNA declarations
float a, b; float st a, b;
double c; double st c;
float d[6], e, f; float st d[6], e, f;

3.4 Changes in assignments or arithmetic operations

3.4.1 Conversions between usual types and stochastic types

In assignment statements, conversions are implicit from C float, int or double types to and from stochastic
types (because the = operator has been overloaded), but for conversions from stochastic types to
standard types, the knowledge of accuracy is lost.

With the following declarations:
float st a, b;
float r;
the assignments a = r;, b = 2; and r = a; are correct but there is, of course, no information from the
accuracy point of view for r.

When a variable is set to a value which can not be exactly coded on computer, the data st method should
be used.

Example:

Initial C statements Modified C statements
for CADNA

#include <cadna.h>
float x, y; float st x, y;
x=1.234; x=1.234;

x.data st();
y=-3.0; y=-3.0;

3.4.2 Classical arithmetic operators

As previously described, all arithmetic operators on floating-point variables are overloaded and arith-
metic expressions without functions do not have to be modified. Expressions may contain a mixture of
stochastic types, classical types and integer types.

With the following declarations:
float st a, b;
double st c;
the statement c = a * a + b * 3; needs no change.

The result of expressions containing stochastic terms will be of stochastic type. As for classical types,
double st prevails over float st.
So with the previous declarations, c = a * c + b * 3 needs no change.

3.5 Changes in reading statements

The family of scanf functions is adapted to classical floating-point variables, which must be transformed
into stochastic variables.

Example:

8



Initial C statements Modified C statements
for CADNA

#include <cadna.h>
float x; float xaux;

float st x;
..... .....
scanf(“x = %14.7e \n”, &x); scanf(“x = %14.7e \n”, &xaux);

x = xaux;

3.6 Changes in printing statements

Before printing each stochastic variable, it must be transformed into a string by the str or strp function.
The required length is 15 for a float st variable and 25 for a double st variable. Therefore formats should
be modified.

For example, if a float variable x becomes a float st variable, the printing instruction can be modified as
follows:

Initial C statements Modified C statements
for CADNA

#include <cadna.h>
float x; float st x;
... ...
printf(“x = %14.7e n”, x); printf(“x = %s n”, strp(x));

3.7 Constants passed as function arguments

Function definitions and function calls must sometimes be adapted because stochastic parameters of
functions must not be passed by value.

Example:

Initial C statements Modified C statements
for CADNA

#include <cadna.h>
float a; float st aux, a;

aux=2.0;
a=3.14*f(2.0); a=3.14*f(aux);
... ...

float f(x) float st f(x)
{ {
float x; float st x;
... ...
} }

3.8 A example of numerical code and its modified version

The following source codes use the Gauss-Jordan method to invert a matrix.

3.8.1 Standard C source code

#include <stdio.h>

#define N 4
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// Initialization:

void InitMat(float M[N][N])

{int i,j;

for(i=0;i<N;i++)

for(j=0;j<N;j++) scanf("%e",&M[i][j]);

}

// Inversion using the Gauss-Jordan method:

void InvertMat(float M[N][N])

{int i,j,k;

float temp;

for(k=0;k<N;k++)

{temp = M[k][k];

M[k][k] = 1.0;

for(j=0;j<N;j++) M[k][j]/=temp;

for(i=0;i<N;i++)

if(i!=k)

{temp=M[i][k];

M[i][k] = 0.0;

for(j=0;j<N;j++) M[i][j] -= temp*M[k][j];

}

}

}

// Display of a matrix:

void DisplayMat(float M[N][N])

{int i,j;

for(i=0;i<N;i++)

{for(j=0;j<N;j++)

printf("%14.7e ",M[i][j]);

printf("\n");

}

}

void main()

{float M[N][N];

printf("Initial matrix:\n");

InitMat(M);

DisplayMat(M);

InvertMat(M);

printf("Inverted matrix:\n");

DisplayMat(M);

}

3.8.2 Source code using the CADNA library

#include <cadna.h>

#include <stdio.h>

#define N 4

// Initialization:

void InitMat(float_st M[N][N])

{float aux;

int i,j;

for(i=0;i<N;i++)

for(j=0;j<N;j++) {scanf("%e",&aux); M[i][j] = aux;}
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}

// Inversion using the Gauss-Jordan method:

void InvertMat(float_st M[N][N])

{int i,j,k;

float_st temp;

for(k=0;k<N;k++)

{temp = M[k][k];

M[k][k] = 1.0;

for(j=0;j<N;j++) M[k][j]/=temp;

for(i=0;i<N;i++)

if(i!=k)

{temp=M[i][k];

M[i][k]=0.0;

for(j=0;j<N;j++) M[i][j] = M[i][j] - temp*M[k][j];

}

}

}

// Display of a matrix:

void DisplayMat(float_st M[N][N])

{int i,j;

for(i=0;i<N;i++)

{for(j=0;j<N;j++)

printf("%s ",strp(M[i][j]));

printf("\n");

}

}

void main()

{cadna_init(-1);

float_st M[N][N];

printf("Initial matrix:\n");

InitMat(M);

DisplayMat(M);

InvertMat(M);

printf("Inverted matrix:\n");

DisplayMat(M);

cadna_end();

}

3.8.3 Example of execution without CADNA

Initial matrix:

1.0000000e+00 2.0000000e+03 5.0000000e-01 4.0000000e+00

2.9999999e-05 1.0000000e+00 2.0000000e+00 8.0000000e+00

4.0000000e+00 5.0000000e-01 2.9999999e-08 2.0000000e+00

2.0000000e+00 3.0000000e+00 5.0000000e-01 5.0000000e+09

Inverted matrix:

-6.2576764e-05 -8.1558341e-05 2.5001565e-01 -9.9964599e-11

5.0009380e-04 -1.2504448e-04 -1.2502252e-04 -1.4995290e-13

-2.5004597e-04 5.0006253e-01 5.8761423e-05 -7.9992352e-10

-2.4999515e-13 -4.9991469e-11 -9.9937121e-11 2.0000000e-10
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3.8.4 Example of execution with CADNA

Initial matrix:

0.1000000E+01 0.1999999E+04 0.5000000E+00 0.4000000E+01

0.2999999E-04 0.1000000E+01 0.2000000E+01 0.8000000E+01

0.4000000E+01 0.5000000E+00 0.2999999E-07 0.2000000E+01

0.2000000E+01 0.3000000E+01 0.5000000E+00 0.5000000E+10

Inverted matrix:

-0.62E-04 @.0 0.250015E+00 -0.10E-09

0.5000938E-03 -0.124E-03 -0.1250225E-03 -0.14E-12

-0.250045E-03 0.500062E+00 0.5876140E-04 -0.799923E-09

-0.250E-12 -0.49E-10 -0.999371E-10 0.2000000E-09

3.9 Numerical debugging with CADNA

One can enable the detection of the following instabilities:
UNSTABLE DIVISION(S),
UNSTABLE POWER FUNCTION(S),
UNSTABLE MULTIPLICATION(S),
UNSTABLE BRANCHING(S),
UNSTABLE MATHEMATICAL FUNCTION(S),
UNSTABLE INTRINSIC FUNCTION(S),
LOSS OF ACCURACY DUE TO CANCELLATION(S).

The library counts the number of detections for each instability. The global information for these
detections is printed out with the cadna end function.
The accuracy estimated by CADNA is valid if there is no deep numerical anomaly during the computa-
tion, i.e. no UNSTABLE DIVISION, UNSTABLE POWER FUNCTION and UNSTABLE MULTIPLICATION.
The meaning of the message is:

• unstable division: the divisor is non-significant

• unstable power function: one operand of the power function is non-significant

• unstable multiplication: both operands are non-significant

• unstable branching: the difference between the two operands is non-significant (a computational
zero).

The chosen branching statement is associated with the equality.

• unstable mathematical function:

in the log, sqrt, exp or log10 function, the argument is non-significant.

• unstable intrinsic function:

– when using integer cast functions, the integral part of the argument can not be exactly deter-
mined due to the round-off error propagation;

– in the fabs function: the argument is non-significant;

– the floor, ceil or trunc function returns different values for each component of the stochastic
argument.

• loss of accuracy due to cancellation: as explained in ??, an unstable cancellation is pointed
out when the difference between the number of exact significant digits (i.e. digits which are not
affected by round-off errors) of the result of an addition or a subtraction and the minimimum of
the number of exact significant digits of the two operands is greater than the cancel level argument.
The default value of this argument is 4. In other words, when one loses more than cancel level
significant digits in one addition or subtraction, CADNA considers that a catastrophic cancellation
has been detected (if the detection of this kind of instability is enabled).
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To perform actual numerical debugging, it is necessary, for each instability, to identify the statement in
the code that generates this instability. This can be performed directly using a symbolic debugger like
gdb with Linux or as a background task using special input and output files.
In both cases, one has to put a breakpoint at the entry of the instability internal function of the CADNA
library. This function is called each time a numerical instability is detected. To get the right label for
this system and compiler dependent function, one can use the following statement:

nm name of the binary code | grep instability
For instance, using gdb with Linux, the general statement which enables the detection of all the insta-
bilities in a single run is

nohup gdb name of the binary code < gdb.in >! gdb.out &
The gdb.in file may contain

break instability

run

while 1

where

cont

end

where prints out the complete trace of the instability which has stopped the run and cont makes the
execution going on.
P.S.: nohup allows to keep the process alive even when logging off.
The gdb.out file will contain all the traces of instabilities.
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