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Université Libre de Bruxelles
Service de Métrologie Nucléaire
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(or Lh(uh − ũ
h) = f

h − Lhũ
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Au = b ⇐⇒ A (u− ũ) = b− A ũ = r̃

(or Lh(uh − ũ
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h − Lhũ
h) consists in

� Transfer the problem on the coarse grid
Restriction R (nc × n): rc = R (b− A ũ)

( fH = IHh (fh − Lhũ
h) )

� Solve the coarse problem
Coarse grid matrix Ac (nc × nc): solve Ac uc = rc

(AHv
H = f

H )
� Interpolate (prolong) the computed coarse solution

Prolongation P (n× nc): ˜̃u = ũ+ P uc( ˜̃u
h
= ũ

h + IhH v
H
)

Thus: ˜̃u = ũ+ P A−1c R (b− A ũ)
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Basic Two-grid iteration for the system

Au = b ⇐⇒ A (u− uk) = b− Auk = rk

� Apply ν1 relaxation iterations to uk , yielding ũk

Error propagation: u− ũk = Sν1
1 (u− uk)

S1 = I −M−1
1 A , where M1 is the used preconditioner

� Apply the coarse grid correction to ũk , yielding ˜̃uk

˜̃u = ũ+ P A−1c R (b− A ũ) → u− ˜̃uk = C(u− ũk)

with C = I − P A−1c RA

� Apply ν2 relaxation iterations to ˜̃uk , yielding uk+1

Error propagation: u− uk+1 = Sν2
2 (u− ˜̃uk)

Globally: u− uk+1 = Sν2
2 C Sν1

1 (u− uk)
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From Two- to multi-grid
� solve Ac uc = rc → solve approximately Ac uc = rc

� The coarse system is solved with a few iterations,
based on the two-grid scheme at that level
(referencing thus a further coarser level)
� 1 iteration: V-cycle
� 2 iterations: W-cycle
Thus: the two-grid algorithm is applied recursively

� Coarsest level: when the number of unknowns is s.t.
� Solution is trivially obtained (n = 1 or so)
� Relaxation is efficient for all modes
� A direct solver is cost efficient

(w.r.t. the number of fine grid unknowns)
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Multigrid as a preconditioner
� The correction uk+1 − uk to uk is linear w.r.t.

the residual rk = b− Auk

� Hence we may write: uk+1 = uk + BMGrk , where
BMG is a matrix that represents the MG preconditioner

� MG as a solver: use stationary iterations (seen above)
MG as a preconditioner: use BMG in combination with a

Krylov subspace method (CG, GMRES, . . . )
� Computation of BMG rk for given rk

Apply the standard algorithm and accumulate in a
vector w all corrections to uk (no need to form uk+1)

For MG as a solver, one would have uk+1 = uk +w

→ w = BMG rk
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MG as a solver MG prec. for Conjugate Gradients

nit ≈ ln(ε−1)
− ln ρ nit ≈

√
κ ln(2 ε−1)
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2
√
1−ρ

(ε = 10−6)
ρ = 0.1 nit ≈ 6 nit ≈ 8

ρ = 0.2 nit ≈ 9 nit ≈ 9

ρ = 0.5 nit ≈ 20 nit ≈ 10

ρ = 0.8 nit ≈ 62 nit ≈ 16

� Classical viewpoint: MG as a solver and target ρ ≈ 0.1



1. Multigrid: quick overview (7)
(p. 7)

MG as a solver MG prec. for Conjugate Gradients

nit ≈ ln(ε−1)
− ln ρ nit ≈

√
κ ln(2 ε−1)

2 = ln(2 ε−1)
2
√
1−ρ

(ε = 10−6)
ρ = 0.1 nit ≈ 6 nit ≈ 8

ρ = 0.2 nit ≈ 9 nit ≈ 9

ρ = 0.5 nit ≈ 20 nit ≈ 10

ρ = 0.8 nit ≈ 62 nit ≈ 16

� Classical viewpoint: MG as a solver and target ρ ≈ 0.1

� Alternative viewpoint: MG as a preconditioner, and ρ
up to 0.8 is not an issue, especially if there are only few
relaxation steps while the coarsening is sufficiently fast
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Geometric Multigrid
� The hierarchy of grids comes from the discretization
� Prolongation & restriction based on interpolation

between successive grids
� Very efficient, but not so convenient for industrial

applications
� The relaxation has to be adapted to the application
� Does not work for unstructured discretization

meshes
� Requires interactions between discretization and

solution modules
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Classical Algebraic Multigrid (AMG)
� Work with the information present in A only
� Select a subset of variables as coarse variables

by inspecting the (strong) connectivity in A

� Build interpolation rules from matrix coefficients
→ prolongation P

� Restriction: R = P T (most often)

� Coarse grid matrix: Ac = RAP = P T AP

(error in the range of P canceled by the coarse grid correction)

� → The coarse grid correction is well defined
once P has been built

˜̃u = ũ+P A−1c R (b−A ũ) = ũ+P
(
P T AP

)−1
P T (b−A ũ)



2. Two-grid convergence theory (1)
(p. 10)

Case: A SPD

Approximation property constant

K(A ,P ,DA) = sup
v∈Rn\{0}

v
T DA

(
I−P(P TDA P)

−1
P TDA

)
v

vT Av

Equivalently, smallest constant K such that

∀v ∈ R
n ∃vc ∈ R

nc such that ‖v − P vc‖2DA
≤ K ‖v‖2A

(Traces back to [Brandt, 1986])

Can be combined with the smoothing property constant

Conclusion:
P is a good prolongation for A (in the AMG sense)

⇐⇒
K(A ,P ,DA) is not large
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More precisely, for a single Jacobi post-relaxation step:

ν1 = 0 , ν2 = 1 and M2 = ω−1DA ; that is

Sν2
2 C Sν1

1 = SJωC =
(
I − ωD−1A A

)(
I − P (P TAP )−1P TA

)

� The eigenvalues of SJωC are real
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More precisely, for a single Jacobi post-relaxation step:

ν1 = 0 , ν2 = 1 and M2 = ω−1DA ; that is

Sν2
2 C Sν1

1 = SJωC =
(
I − ωD−1A A

)(
I − P (P TAP )−1P TA

)

� The eigenvalues of SJωC are real

� λmax(SJωC) = 1− ω
K(A ,PA ,DA)

� λmin(SJωC) ≥ 1− ω λmax(D
−1
A A)

� →
ρ(SJωC) ≤ max

(
1− ω

K(A ,P ,DA)
, ω λmax(D

−1
A A)− 1

)

Nontrivial convergence of a very
basic TG scheme with Jacobi relaxation

⇐⇒ K(A ,P ,DA) is not large
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Case: A nonsymmetric but positive definite in R
n

v
TAv > 0 ∀v ∈ R

n\{0} ⇐⇒ AS = 1
2(A+AT ) is SPD

� The eigenvalues of SJωC are in general complex
� For any eigenvalue λ of SJωC ,

ℜe(λ) ≤ 1− ω
K(AS ,P ,DA)

No eigenvalue close to 1 if P is good for AS

→ near kernel modes properly damped
� For M-matrices: yields a meaningful bound on ρ(SJωC)

Nontrivial convergence of a very
basic TG scheme with Jacobi relaxation

⇐⇒ K(AS , P ,DA) is not large



2. Two-grid convergence theory (4)
(p. 13)

∀v ∈ R
n : K ≥ min

vc∈Rnc

‖v − P vc‖2DA

‖v‖2A
Let zk be such that D−1A A zk = λk zk

Then, ‖zk‖2A = z
T
kA zk = λk z

T
kDA zk = λk ‖zk‖2DA

Hence, for any such eigenvector:

K ≥ min
vc∈Rnc

‖zk − P vc‖2DA

λk ‖zk‖2DA

To keep the approximation property constant K moderate,
all eigenvectors associated with small eigenvalues should
have a close approximation in the range of P

These are called the algebraically smooth vectors



2. Two-grid convergence theory (5)
(p. 14)

Consider the 5 point Finite Difference approximation of

−∂
2u

∂x2
− ε

∂2u

∂x2
= f in Ω = (0, 1)× (0, 1)

with Dirichlet B.C., using a uniform grid of mesh size
h = 1/N

The eigenvector of D−1A A are the vectors sampling the
functions

sin(k π x) sin(ℓ π y) , k, ℓ = 1, . . . , N

and the corresponding eigenvalues are

λk,ℓ = (1 + ε)−1
((

1− cos k π
N

)
+ ε

(
1− cos ℓ π

N

))
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λk,ℓ = (1 + ε)−1
((

1− cos k π
N

)
+ ε

(
1− cos ℓ π

N

))

� case ε ≈ 1 : λk,ℓ small ⇐⇒ k , ℓ≪ N

The algebraically smooth vectors coincide with the
geometrically smooth vectors



2. Two-grid convergence theory (6)
(p. 15)

λk,ℓ = (1 + ε)−1
((

1− cos k π
N

)
+ ε

(
1− cos ℓ π

N

))

� case ε ≈ 1 : λk,ℓ small ⇐⇒ k , ℓ≪ N

The algebraically smooth vectors coincide with the
geometrically smooth vectors

� case ε ≪ 1 : λk,ℓ small for k ≪ N and any ℓ

The algebraically smooth vectors can be arbitrary
oscillatory in the y direction

→ The approximation property constant K(A ,P ,DA)
is large with usual “geometric” prolongations
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The approximation property constant K(A ,P ,DA)
can be large with usual “geometric” prolongations
� Geometric MG philosophy

K is only meaningful for Jacobi and related
relaxations. Thus, large K tells us that we have to
seek for a relaxation adapted to the problem at hand.

� Classical AMG philosophy

We want to use standard relaxation in a problem
independent manner.

Thus, the algorithms that define P do not just need to
mimic geometric MG for model problems.

Their main task is to keep K(A ,P ,DA)
bounded in one way or another.
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Usually slower on model problems
(the copy cannot do better than the original)
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3. Geometric MG and AMG (2)
(p. 17)

Consequences for Classical AMG
� Initial idea: mimic geometric multigrid

Usually slower on model problems
(the copy cannot do better than the original)

� But can be quite different for non model problems
� AMG more robust, in the sense that large classes of

problems can be handled by a single software code
� Need elaborate algorithms, usually with many options

and parameters
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Consequences for Classical AMG (cont.)
� As a result, the coarse grid matrix Ac = P TAP is

often denser (more nonzero entries per row) than A

� Main issue: this effect can be cumulative

Starting from the fine grid matrix A = A1 ,
one defines P = P1 and A2 = P T

1 A1 P1

To obtain the next coarser level,
one defines P2 from A2 , and sets A3 = P T

2 A2 P2

And so on . . .
� The nightmare of classical AMG: Keep control of the

Algorithmic Complexity

CA =

∑L
k=1 nnz(Ak)

nnz(A1)
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Keep most of the paradigms of classical AMG
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4. Aggregation-based AMG (1)
(p. 19)

Philosophy of (plain or unsmoothed) Aggregation AMG

Keep most of the paradigms of classical AMG
� Pattern of the two-grid scheme:

relaxation – coarse grid correction – relaxation
� Work with the information present in A only:

� Build the prolongation P from A

� Restriction: R = P T

� Coarse grid matrix: Ac = RAP = P T AP

� Set up P in such a way that K(A ,P ,DA) is bounded
� Proceed recursively

Set up phase: to define coarser and coarser levels
Solve phase: approximate solution of coarse systems



4. Aggregation-based AMG (2)
(p. 20)

. . . but

do not try to mimic geometric MG
(even for model problems)

Instead, keep P as simple (sparse) as possible
to keep K(A ,P ,DA) bounded



4. Aggregation-based AMG (3)
(p. 21)

Setup phase

To build P , one first group the nodes into aggregates GJ

(The set of GJ form a partitioning of [1 , n])

Each aggregate
GJ corresponds to
1 coarse variable
(and vice-versa) G

1

G
2

G
3

G
4



4. Aggregation-based AMG (4)
(p. 22)

Associated prolongation P : PiJ =

{
1 if i ∈ GJ

0 otherwise

Example

uc =




1

2

3

4


 → G

1

G
2

G
3

G
4

1

1

1

2

2

2

2

3

3 3

3

4

4
4

4

4
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(p. 23)

Coarse grid matrix: Ac = P T AP given by

(Ac)IJ =
∑

k∈GI

∑

ℓ∈GJ

akℓ

G
1

G
2

G
3

G
4

→

Tends to reproduce the stencil from the fine grid



4. Aggregation-based AMG (5)
(p. 23)

Coarse grid matrix: Ac = P T AP given by

(Ac)IJ =
∑

k∈GI

∑

ℓ∈GJ

akℓ

G
1

G
2

G
3

G
4

→

Tends to reproduce the stencil from the fine grid
Recursive use raises no difficulties
Low setup cost & memory requirements
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4. Aggregation-based AMG (6)
(p. 24)

No free lunch theorem
We gained something, where are the downsides?
� ρ 6→ 0 when the number of relaxation steps ↑

Solution: use few relaxation steps
� ρ ≈ 0.1 out of reach

Instead: ρ commonly in the range 0.5 − 0.8

Solution: use MG as a preconditioner (cf. above)
(few relaxation steps→ cheap per iteration)

� Not optimal with the V-cycle
(i.e., the number of iter. ↑ when the number of levels ↑ )
Solution: enhanced MG cycle – the K-cycle
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Alternatively to the K-cycle, some authors
recommend to rescale the coarse grid matrix Ac = P TAP

� Heuristic motivated by the comparison of Ac with
coarse grid matrices based on rediscretization, but this
comparison makes sense only for regular aggregates
and the scaling factor depends on aggregates’ size
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Remark
Alternatively to the K-cycle, some authors
recommend to rescale the coarse grid matrix Ac = P TAP

� Heuristic motivated by the comparison of Ac with
coarse grid matrices based on rediscretization, but this
comparison makes sense only for regular aggregates
and the scaling factor depends on aggregates’ size

� The two-grid convergence theory is for Galerkin coarse
grid matrices only→ seeking for V-cycle convergence,
one may deteriarate two-grid convergence

� In practice: yields improvement (to some extent only)

Some works show that aggregation-based AMG can
be good with rescaling, but none show that it is not
even better with the K-cyle



4. Aggregation-based AMG (8)
(p. 26)

Remark (paradox)

Geometric MG is heavily based on:

two-grid analysis (for the theoretical assessment)

and the V-cycle (for practical usage),

but, in fact, optimal two-grid convergence is not sufficient
to guarantee optimal V-cycle convergence
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Reminder: the coarse grid correction has as main step
� Solve the coarse problem

Coarse grid matrix Ac (nc × nc): solve Ac uc = rc

In a multigrid algorithm, “solve”→ “approximate solve”
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5. The K-cycle (1)
(p. 27)

Reminder: the coarse grid correction has as main step
� Solve the coarse problem

Coarse grid matrix Ac (nc × nc): solve Ac uc = rc

In a multigrid algorithm, “solve”→ “approximate solve”

The coarse system is solved with a few iterations,
based on the two-grid scheme at that level
(referencing thus a further coarse level)

The used scheme determines the multigrid cycle:
� 1 iteration of MG as a solver: V-cycle
� 2 iterations of MG as a solver: W-cycle
� Enhancement:

2 iterations of MG as a preconditioner: K-cycle



5. The K-cycle (2)
(p. 28)

Workflow for 1 iteration using the K-cycle or the W-cycle
(L = 4)

Level 1 (linear system to solve)

Level 2

Level 3

Level 4 (BLS : bottom level solver)

R1

R2

R3 P3 R3 P3

P2 R2

R3 P3 R3 P3

P2

P1

S
(1)
1

S
(1)
2

S
(1)
3 S

(2)
3 S

(1)
3 S

(2)
3

S
(2)
2 S

(1)
2

S
(1)
3 S

(2)
3 S

(1)
3 S

(2)
3

S
(2)
2

S
(2)
1

BLS BLS BLS BLS
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� The workflow is the same for the K-cycle and the
W-cycle. The K-cycle is only slightly more costly.
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5. The K-cycle (3)
(p. 29)

� The workflow is the same for the K-cycle and the
W-cycle. The K-cycle is only slightly more costly.

� Optimal two-grid convergence can be sufficient
to guarantee optimal multigrid convergence
with the W-cycle and with the K-cycle

� In the SPD case, the theoretical limit is, for both
cycles,

max
1≤k≤L−1

ρ
(k)
TG < 0.5 ,

where ρ
(k)
TG is the two-grid convergence factor at level k

� This upper bound of 0.5 is realistic for the W-cycle,
but reflects shortcomings in the analysis regarding the
K-cycle



5. The K-cycle (4)
(p. 30)

In practice, the K-cycle allows
to stabilize the number of
iterations even when ρ

(k)
TG

is relatively large

Example: Number of
iterations to reduce
the relative residual
error by 10−12 as a

function of the
number of levels

7 levels 14 levels

0.49 < ρ
(k)
TG < 0.50(

ln(2 ε−1)
2
√
1−ρTG

≈ 20
)

V 188 > 999

W 37 50
K 20 20

0.79 < ρ
(k)
TG < 0.80(

ln(2 ε−1)
2
√
1−ρTG

≈ 32
)

V 256 > 999

W 108 315
K 42 44



5. The K-cycle (5)
(p. 31)

Computational cost: 1 step of the MG method involves
� ν relaxation steps at level 1

+ 2 iterations at level 2
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5. The K-cycle (5)
(p. 31)

Computational cost: 1 step of the MG method involves
� ν relaxation steps at level 1

+ 2 iterations at level 2
� that is, ν relaxation steps at level 1

+ 2 ν relaxation steps at level 2
+ 2 · 2 = 22 iterations at level 3

� that is, ν relaxation steps at level 1
+ 2 ν relaxation steps at level 2
+ 22ν relaxation steps at level 3
+ 23 iterations at level 4

� . . .

Cost of 2k−1 ν relaxation steps at level k : ∼ 2k−1 ν nnz(Ak)



5. The K-cycle (6)
(p. 32)

K-cycle or W-cycle
2k−1 ν relaxation steps at level k : Workk ∼ 2k−1 ν nnz(Ak)

V-cycle
ν relaxation steps at level k : Workk ∼ ν nnz(Ak)

� Standard complexity: C =
∑L

k=1 nk

n

Operator complexity: CA =

∑L
k=1 nnz(Ak)

nnz(A)

Weighted complexity: CW =

∑L
k=1 2

k−1 nnz(Ak)

nnz(A)



5. The K-cycle (6)
(p. 32)

K-cycle or W-cycle
2k−1 ν relaxation steps at level k : Workk ∼ 2k−1 ν nnz(Ak)

V-cycle
ν relaxation steps at level k : Workk ∼ ν nnz(Ak)

� Standard complexity: C =
∑L

k=1 nk

n

Operator complexity: CA =

∑L
k=1 nnz(Ak)

nnz(A)

Weighted complexity: CW =

∑L
k=1 2

k−1 nnz(Ak)

nnz(A)

�
Cost of K-cycle
Cost of V-cycle

≈ CWCA



5. The K-cycle (7)
(p. 33)

If nnz(Aj)

nnz(Aj+1)
> τ > 2 ,

then nnz(Ak) < τ−(k−1) nnz(A) and

CW =

∑L
k=1 2

k−1 nnz(Ak)

nnz(A)
<

L∑

k=1

(
2

τ

)k−1
<

1

1− 2
τ

whereas

CA =

∑L
k=1 nnz(Ak)

nnz(A)
<

L∑

k=1

(
1

τ

)k−1
<

1

1− 1
τ



5. The K-cycle (7)
(p. 33)

If nnz(Aj)

nnz(Aj+1)
> τ > 2 ,

then nnz(Ak) < τ−(k−1) nnz(A) and

CW =

∑L
k=1 2

k−1 nnz(Ak)

nnz(A)
<

L∑

k=1

(
2

τ

)k−1
<

1

1− 2
τ

whereas

CA =

∑L
k=1 nnz(Ak)

nnz(A)
<

L∑

k=1

(
1

τ

)k−1
<

1

1− 1
τ

For τ ' 4 , the extra cost for the K-cycle is moderate

K-cycle with τ ≥ 4 : cheaper than the V-cycle with CA ≥ 2



6. Quality aware aggregation (1)
(p. 34)

A SPD : K(A ,P ,DA) = sup
v∈Rn\{0}

v
T DA

(
I−P(P TDA P)

−1
P TDA

)
v

vT Av

With aggregation based P , one has, ∀i ∈ [1, n] :

PiJ 6= 0 (i.e., PiJ = 1) ⇐⇒ i ∈ GJ (true for only one J)

Hence,
(
P TDA P

)
is diagonal:

(
P TDA P

)
IJ

=
n∑

k=1

PkI akk PkJ = 0 if I 6= J

Further,
(
P
(
P TDA P

)−1
P T

)
ik

=

nc∑

J=1

PiJ

((
P TDA P

)−1)
JJ

PkJ

can be 6= 0 only if i and k belong to the same GJ



6. Quality aware aggregation (2)
(p. 35)

Hence

Z = DA

(
I − P

(
P TDA P

)−1
P TDA

)
=



Z1

. . .
Znc




is block diagonal (using an ordering compliant with the
partitioning in aggregates), and

v
t Z v =




vG1

...
vGnc




T 

Z1

. . .

Znc







vG1

...
vGnc




=

nc∑

J=1

v
T
GJ

ZJ vGJ
,

where vGJ
is the restriction of v to the nodes in GJ



6. Quality aware aggregation (3)
(p. 36)

Suppose now that there exists

Ab =




A
(b)
1

. . .

A
(b)
nc




such that v
T Av ≥ v

T Ab v ∀v ∈ R
n

Then: K(A ,P ,DA) = sup
v∈Rn\{0}

v
T DA

(
I−P(P TDA P)

−1
P TDA

)
v

vT Av

≤ sup
v∈Rn\{0}

v
T Z v

vT Ab v

= sup
v∈Rn\{0}

∑nc

J=1 v
T
GJ

ZJ vGJ∑nc

J=1 v
T
GJ

A
(b)
J

vGJ

≤ max
1≤J≤nc

sup
v∈R|GJ |

v
T ZJ v

vT A
(b)
J v



6. Quality aware aggregation (4)
(p. 37)

� The quantity

µGJ
= sup

v∈R|GJ |

v
T ZJ v

vT A
(b)
J v

measures aggregate’s quality (the lower the better)
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6. Quality aware aggregation (4)
(p. 37)

� The quantity

µGJ
= sup

v∈R|GJ |

v
T ZJ v

vT A
(b)
J v

measures aggregate’s quality (the lower the better)

� For µJ being finite, A(b)
J should be positive definite or

have the same null space as ZJ

� Hence there are strict requirements on Ab

Nevertheless, for (weakly) diagonally dominant
matrices, relevant A(b)

J can be easily set up for any GJ

(A(b)
J equals the restriction of A to the nodes in GJ

plus some diagonal correction)

More general matrices: ∃ heuristic extension



6. Quality aware aggregation (5)
(p. 38)

Nonsymmetric matrices

Reminder: if A is nonsymmetric but positive definite in R
n ,

the meaningful quantity is

K(AS , P ,DA) ,

where AS = 1
2(A+ AT )

→ measure of the quality based on AS

(The approach is rigorous if AS is diagonally dominant)



6. Quality aware aggregation (6)
(p. 39)

Example: 5 point FD for −∂2u
∂x2 − ε ∂2u

∂x2 = f ,
size 4 aggregates

Boxwise aggregation

• •
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• •

• •
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• •
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• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

µG = 1 + ε−1

≤ 3 +
√
2

if ε ≥ (2 +
√
2)−1
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• •
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• •
• •
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• •

• •
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if ε ≥ (2 +
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Example: 5 point FD for −∂2u
∂x2 − ε ∂2u

∂x2 = f ,
size 4 aggregates

Boxwise aggregation

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

µG = 1 + ε−1

≤ 3 +
√
2

if ε ≥ (2 +
√
2)−1

Linewise aggregation

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

µG = (1 + ε)(2 +
√
2)

≤ 3 +
√
2

if ε ≤ (2 +
√
2)−1

Thus: µG ≤ 3 +
√
2 independently of ε

if one always chooses the good shape & orientation
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(p. 40)

The convergence theory via aggregates’ quality:
� is compatible with irregular geometries, unstructured

grids, jumps in coefficients, etc
(the bounds are essentially unaffected if
the aggregates are chosen properly)
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6. Quality aware aggregation (7)
(p. 40)

The convergence theory via aggregates’ quality:
� is compatible with irregular geometries, unstructured

grids, jumps in coefficients, etc
(the bounds are essentially unaffected if
the aggregates are chosen properly)

� requires diagonally dominant matrices
(e.g., M-matrices with nonnegative row-sum),
but has natural heuristic extensions

� whenever applicable, holds at every level of the
hierarchy

� covers symmetric and nonsymmetric problems in a
uniform fashion



6. Quality aware aggregation (8)
(p. 41)

From quality assessment to quality control

The approximation property constant satisfies

K(A ,P ,DA) ≤ max
J

µJ

� A posteriori control of given aggregation scheme:
limited utility (often a few aggregates with large µG)
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6. Quality aware aggregation (8)
(p. 41)

From quality assessment to quality control

The approximation property constant satisfies

K(A ,P ,DA) ≤ max
J

µJ

� A posteriori control of given aggregation scheme:
limited utility (often a few aggregates with large µG)

� → Aggregation algorithm based on the control of µG

� The repeated assessment of µG is costly for
aggregates of arbitrary size

But, for a pair {i, j} , µ{i,j} is a simple function of
aii , ajj , aij and

∑n
k=1 aik

→ base the procedure on pairwise aggregation



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.



6. Quality aware aggregation (9)
(p. 42)

Pairwise aggregation

1. Pick up a node i

2. For all j s.t. aij 6= 0 :
Compute µ{i,j}

3. Select j which minimizes µ{i,j}

4. If µ{i,j} is below the given threshold:
the next aggregate is {i, j}

Otherwise:
the next aggregate is {i}

5. If some node(s) have not
been processed yet: GOTO 1.
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� In general,
nnz(Ac) ≈

nnz(A)

Mean aggregate size
Aggregates of size at most 2 do not yield a sufficiently
fast decrease (each MG iteration would be too costly)

With the K-cycle, MG iterations remain dominated by
fine grid computations if Mean aggregate size ' 4
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6. Quality aware aggregation (10)
(p. 43)

� In general,
nnz(Ac) ≈

nnz(A)

Mean aggregate size
Aggregates of size at most 2 do not yield a sufficiently
fast decrease (each MG iteration would be too costly)

With the K-cycle, MG iterations remain dominated by
fine grid computations if Mean aggregate size ' 4

� One way to achieve this is to form the intermediate
coarse grid matrix based on pairwise aggregation, and
apply the pairwise algorithm to this latter, forming thus
pairs of pairs → Repeated Pairwise aggregation

� Doing so, one can check if a tentative pair of pair has
an acceptable quality indicator in the fine grid matrix
Trick: check µG ≤ µ without computing µG → cheap
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Repeated Pairwise aggregation

s = 1 ; A(s) = A

nnz(A(s+1)) <
nnz(A)

τ

or s==npass ?

Apply pairwise aggregation to A(s)

Form aggregated matrix A(s+1)

s← s+ 1

Ac = A(s+1)

no
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6. Quality aware aggregation (11)
(p. 44)

Repeated Pairwise aggregation

s = 1 ; A(s) = A

nnz(A(s+1)) <
nnz(A)

τ

or s==npass ?

Apply pairwise aggregation to A(s)

Form aggregated matrix A(s+1)

s← s+ 1

Ac = A(s+1)

Check µG < µ in A

no

yes



6. Quality aware aggregation (12)
(p. 45)

Linear Finite element grid:
Zoom:



6. Quality aware aggregation (13)
(p. 46)

Aggregation Zoom
at Level 1 level 1

Level 2 Level 3



6. Quality aware aggregation (14)
(p. 47)

Aggregation works also for higher order FE matrices
Example:
3rd order (P3)
nnz(A) ≈ 16n

Fine grid Level 1

Level 2 Level 3



6. Quality aware aggregation (15)
(p. 48)

Upwind FD approximation of
−ν∆u + v · grad (u) = f in Ω = unit square

with u = g on ∂Ω , v(x , y) =


 x(1−x)(2 y − 1)

−(2x− 1)y(1−y)


 :
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6. Quality aware aggregation (16)
(p. 49)

ν = 1 : diffusion dominating (near symmetric)
Aggregation Spectrum
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+ : σ(I − SJωC) — : theory
¨¨ : σ(ωD−1A) (convex hull)



6. Quality aware aggregation (17)
(p. 50)

ν = 10−3 : convection dominating (strongly nonsymmetric)
Aggregation Spectrum
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+ : σ(I − SJωC) — : theory
¨¨ : σ(ωD−1A) (convex hull)



7. Performance (1)
(p. 51)

Classical AMG talk on application
� Description of the application (beautiful pictures)
� Description of the AMG strategy and needed tuning
� Numerical results often not fully informative:

� no robustness study on a comprehensive test suite;
� no comparison with state of the art competitors.
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� Most applications ran by people downloading the code.
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(we don’t have the beautiful pictures at hand).
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7. Performance (2)
(p. 52)

Presentation of AGMG performance
� Most applications ran by people downloading the code.

Some of those I am aware of: CFD, electrocardiology
(we don’t have the beautiful pictures at hand).

� The code is used black box
(adaptation neither sought nor needed)

� We think the most important is the robustness on a
comprehensive test suite

� We are not afraid of the comparison with state of the
art competitors



7. Performance (3)
(p. 53)

Comparison with some other methods
� AMG(Hyp): a classical AMG method as implemented

in the Hypre library( Boomer AMG)
� AMG(HSL): a classical AMG method as implemented

in the HSL library
� ILUPACK: efficient threshold-based ILU preconditioner
� Matlab \: Matlab sparse direct solver (UMFPACK)

All methods but the last with Krylov subspace acceleration
(Iterations stopped when ‖rk‖‖r0‖ < 10−6)

Quantity reported:
Total elapsed times in seconds (including set up) per
106 unknowns as a function of the number of unknowns
(more unknowns yielded by grid refinement)



7. Performance (4)
(p. 54)

POISSON 2D, FD LAPLACE 2D, FE(P3)
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33% of nonzero offdiag > 0



7. Performance (5)
(p. 55)

Poisson 2D, L-shaped, FE Convection-Diffusion 2D, FD
Unstructured, Local refin. ν = 10−6

10
5

10
6

10
7

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL): coarsening failure in all cases
ILUPACK
Matlab \

10
4

10
5

10
6

10
7

10
8

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \



7. Performance (6)
(p. 56)

POISSON 3D, FD LAPLACE 3D, FE(P3)
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51% of nonzero offdiag > 0



7. Performance (7)
(p. 57)

Poisson 3D, FE Convection-Diffusion 3D, FD
Unstructured, Local refin. ν = 10−6
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7. Performance (8)
(p. 58)

Robustness assessment
� Times reported are total elapsed times in seconds

(including set up) per 106 unknowns
� Test suite: discrete scalar elliptic PDEs

� SPD problems with jumps and all kind of anisotropy
in the coefficients (some with reentering corner)

� convection-diffusion problems with viscosity from
1 → 10−6 and highly varying recirculating flow

� FD on regular grids; 3 sizes:
2D: h−1 = 600 , 1600 , 5000
3D: h−1 = 80 , 160 , 320

� FE on (un)structured meshes (with different levels of
local refinement); 2 sizes: n = 0.15e6 → n = 7.1e6



7. Performance (9)
(p. 59)

2D symmetric problems
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3D symmetric problems
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7. Performance (11)
(p. 61)

2D nonsymmetric problems
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7. Performance (12)
(p. 62)

3D nonsymmetric problems
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8. Parallelization of AGMG (1)
(p. 63)

Perspectives
� Good to start from the best sequential method

Any scalability curve should be put in perspective:
how much do we loose with respect the best
state-of-the-art method on 1 core?



8. Parallelization of AGMG (1)
(p. 63)

Perspectives
� Good to start from the best sequential method

Any scalability curve should be put in perspective:
how much do we loose with respect the best
state-of-the-art method on 1 core?

� The faster the method,
the more challenging its parallelization

Less computation means less opportunity to overlap
communications with computation
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8. Parallelization of AGMG (2)
(p. 64)

General parallelization strategy
� Partitioning of the unknowns

→ partitioning of matrix rows
� Aggregation algorithm

Unchanged, except that aggregates are only formed
with unknowns in a same partition.
→ inherently parallel
(use the local matrix rows, no communication
needed except to form the next coarse grid matrix)

� → Prolongation & Restriction are inherently parallel
� Relaxation: Gauss-Seidel, ignoring connections

between different partitions → inherently parallel



8. Parallelization of AGMG (3)
(p. 65)

Level 1 (linear system to solve)

Level 2

Level 3

Level 4 (BLS : bottom level solver)

R1

R2

R3 P3 R3 P3

P2 R2

R3 P3 R3 P3

P2

P1

S
(1)
1

S
(1)
2

S
(1)
3 S

(2)
3 S

(1)
3 S

(2)
3

S
(2)
2 S

(1)
2

S
(1)
3 S

(2)
3 S

(1)
3 S

(2)
3

S
(2)
2

S
(2)
1

BLS BLS BLS BLS

S
(1)
i ,S(2)

i : Relaxation & Vector updates (|| : no comm.)
Matrix vector product (standard parallelization)
Inner products (global reduce: OK)

Ri ,Pi : Grid transfer (|| : no comm.)
BLS : Bottom level solver, initially MUMPS (Tricky)



8. Parallelization of AGMG (4)
(p. 66)

Parallel AGMG: version 3.2.0

Poisson 3D on IBM BG/Q
(16 processes per node)

#p
n

106
it. Tsu Tsol (Tbl) Ttot

16 43.6 11 27.4 26.6 (1.8) 54.0
64 175.6 11 28.0 29.5 (4.2) 57.5

512 1404.9 11 30.2 59.1 (33.6) 89.3
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8. Parallelization of AGMG (5)
(p. 67)

Algorithm redesign

� Only four levels, whatever problem size
� Then the bottom level system has about 500 times

less unknowns than the initial fine grid system
→ still very large

� Thus: Iterative bottom level solver
� 500 times less
→ Need not be as fast per unknown as AGMG

� But has to scale very well in parallel
(despite smaller problem size)



8. Parallelization of AGMG (6)
(p. 68)

Iterative bottom level solver
� Aggregation-based two-grid method

(one further level: very coarse grid)
� All unknowns on a same process form 1 aggregate

(very coarse grid: size = number of processes (cores))
� Better smoother:

apply sequential AGMG to the local part of the matrix
� Very coarse grid system

� if still too large, solved in parallel
within subgroups of processes

� the solver is AGMG again
(either sequential or parallel)



8. Parallelization of AGMG (7)
(p. 69)

R3 P3

S
(1)
3 S

(2)
3

BLS · · ·

· · ·
Rb Pb Rb Pb

Sb Sb

Bb Bb

Sb : sequential AGMG applied to “local” part of the matrix

Bb : sequential AGMG (512 cores or less) or
parallel AGMG in subgroups (more than 512 cores)



8. Parallelization of AGMG (8)
(p. 70)

Results: the magic works
Weak scalability on CURIE (Intel Farm) for 3D Poisson

Elapsed time (seconds) – vs – number of unknowns

Finite Difference P3 Finite Elements
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8. Parallelization of AGMG (9)
(p. 71)

3D Poisson (Finite Difference) on HERMIT (Cray XE6)

Weak scalability Strong scalability
Time – vs – # unknowns Time – vs – number of cores
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8. Parallelization of AGMG (10)
(p. 72)

Weak scalability on JUQUEEN (IBM BG/Q) for
3D Poisson (Finite Difference)

Elapsed time – vs – number of unknowns
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9. Conclusions
(p. 73)

Some key ideas
� Reuse AMG paradigms, but keep P as simple as

possible (at most one nonzero per row)
� Possibly slower convergence compensated by

� low cost per iteration
� Krylov accelaration everywhere

� Benefit of “simple” P :
� Explicit control of the two-grid convergence rate
� Connectivity pattern on the coarse grids:

similar or sparser than that on the fine grid
(→ no complexity issue with the recursive use)

� Easy parallelization
(At large scale, need clever coarsest grid solver)



Some references
(p. 74)

Two-grid convergence theory
•Algebraic analysis of two-grid methods: the nonsymmetric case, NLAA (2010)
•Algebraic theory of two-grid methods (NTMA, to appear – review paper)
The K-cycle
•Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA (2008)
Two-grid analysis of aggregation methods
•Analysis of aggregation–based multigrid (with A. C. Muresan), SISC (2008)
•Algebraic analysis of aggregation-based multigrid, (with A. Napov) NLAA (2011)
AGMG and quality aware aggregation
•An aggregation-based algebraic multigrid method, ETNA (2010).
•An algebraic multigrid method with guaranteed convergence rate (with A. Napov),

SISC (2012)
•Aggregation-based algebraic multigrid for convection-diffusion equations,

SISC (2012)
•Algebraic multigrid for moderate order finite elements (with A. Napov), SISC (2014)
Parallelization
•A massively parallel solver for discrete Poisson-like problems, Tech. Rep. (2014)



Some references !! Thank you !!
(p. 74)

Two-grid convergence theory
•Algebraic analysis of two-grid methods: the nonsymmetric case, NLAA (2010)
•Algebraic theory of two-grid methods (NTMA, to appear – review paper)
The K-cycle
•Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA (2008)
Two-grid analysis of aggregation methods
•Analysis of aggregation–based multigrid (with A. C. Muresan), SISC (2008)
•Algebraic analysis of aggregation-based multigrid, (with A. Napov) NLAA (2011)
AGMG and quality aware aggregation
•An aggregation-based algebraic multigrid method, ETNA (2010).
•An algebraic multigrid method with guaranteed convergence rate (with A. Napov),

SISC (2012)
•Aggregation-based algebraic multigrid for convection-diffusion equations,

SISC (2012)
•Algebraic multigrid for moderate order finite elements (with A. Napov), SISC (2014)
Parallelization
•A massively parallel solver for discrete Poisson-like problems, Tech. Rep. (2014)
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