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Objectives and preliminaries

Objectives

Objectives

Objectives

Given A ∈ Cm×n with p = min(m,n) we seek to compute a rank-k
approximation, typically with k � p (say m,n ∼ 104,106,108, · · · and
k ≈ 10 or 102) as

A≈ E F H , E ∈ Cm×k , F ∈ Cn×k .

Solving this problem usually requires algorithms for computing the
Singular Value Decomposition (SVD) or an eigendecomposition
corresponding to dominant eigenvalues.

Goal of the lecture : review standard deterministic approaches for the
low rank approximation of matrices (sparse and dense).

Those methods are building blocks in more recent advanced
strategies (e.g. randomized methods, see lecture of Pierre Blanchard).

Focus on the analysis of the standard algorithms with respect to
parallelism.
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Objectives

Current challenges in algorithmic design

Current challenges in algorithmic design

State-of-the-art deterministic methods of numerical linear algebra were
designed for an environment where the matrix fits into memory (RAM)
and the key to performance was to minimize the number of floating
point operations (flops) required.

Currently, communication is the real bottleneck
Moving data from a hard drive
Moving data between nodes of a parallel machine
Moving data between nodes of a cloud computer.

Ideally we should target for efficient algorithms scaling linearly with the
problem size and with minimal data movement.

This is required due to the increasingly large amount of data in
current applications (web search, machine learning, social networks,
genomics/proteomics data, · · · ).
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Material and goals of the lecture

Material and goals of the lecture

Material

Lecture notes with references to original papers and additional
suggested readings.

Interactive ulıa notebook during the afternoon session.

"Real-life" applications during the afternoon session.

Goals of the lecture

Briefly review fundamental matrix decompositions (Section 2).

Provide a brief review on deterministic methods for low rank
approximations with an emphasis on parallel aspects (Sections 3 and 4).

Shortly describe related parallel software (Section 5).

Give numerical illustrations in ulıa during the afternoon session.
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Objectives and preliminaries

Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Norms

Euclidean inner product : x ∈ Cn,y ∈ Cn,< x ,y >= yHx = ∑
n
j=1 xj ȳj .

Euclidean norm : x ∈ Cn, ‖x‖2 = (∑
n
j=1 |xj |2)1/2.

`p norm : x ∈ Cn, ‖x‖p = (∑
n
j=1 |xj |p)1/p.

Spectral norm of A ∈ Cm×n :

‖A‖2 = sup
x 6=0

‖Ax‖2

‖x‖2
,x ∈ Cn.

Frobenius norm of A ∈ Cm×n :

‖A‖F = (
m

∑
i=1

n

∑
j=1
|Aij |2)1/2.
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Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Transpose and adjoint

Given A ∈ Cm×n, the transpose B = AT ∈ Cn×m is defined as :

Bij = Aji .

Given A ∈ Cm×n, the adjoint AH ∈ Cn×m is defined as :

AH = AT .

Useful norm relation :

‖A‖2
2 = ‖AAH‖2 = ‖AHA‖2.
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Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Special classes of matrices

A m×n matrix A is orthonormal if its columns form an orthonormal
basis, i.e., AHA = In.

A n×n matrix A is normal if AHA = AAH .

A n×n real matrix A is symmetric if AT = A.

A n×n matrix A is self-adjoint (Hermitian) if AH = A.

A n×n matrix A is skew-adjoint if AH =−A.

A n×n matrix A is unitary if it is invertible and AH = A−1.

A n×n self-adjoint matrix A is said to be positive definite if :

∀x ∈ Cn,x 6= 0,xHAx > 0.

A n×n self-adjoint matrix A is said to be positive semi-definite if :

∀x ∈ Cn,x 6= 0,xHAx ≥ 0.
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Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Spectral decomposition

λ is an eigenvalue and v an eigenvector of A ∈ Cn×n if :

v 6= 0, Av = λv .

A ∈ Cn×n is normal if and only if A admits a factorization of the form :

A = VDV H ,

where V = [v1v2 · · ·vn] ∈ Cn×n is unitary and D ∈ Cn×n is diagonal with
entries λj ,(j = 1, · · · ,n).

The previous relation can alternatively be written

A =
n

∑
j=1

λjvjv
H
j ,

where (λj ,vj ) are the eigenpairs of A.
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Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Partial spectral decomposition and Krylov subspace methods

If A ∈ Cn×n can be applied rapidly to vectors as happens when A is
sparse or structured, then Krylov subspace methods can accurately
and effectively compute a partial spectral decomposition.

Given v ∈ Cn such as ‖v‖2 = 1 and A ∈ Cn×n, the Krylov subspace of
dimension at most k generated by A and v is defined as :

Kk (A,v) = span{v ,Av , · · · ,Ak−1v}.

The idea is to seek approximations of eigenvectors within this
particular subspace.

Caveat : the most basic versions of Krylov subspace methods are
numerically unstable !

Block Krylov subspace methods consider the case where the starting
vector v is replaced by a starting matrix V of appropriate dimension. A
richer subspace is then expected.
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Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Householder reflection (Householder matrix, Householder
transformation)

Given v ∈ Cm such as ‖v‖2 = 1, the Householder matrix Hv is defined
as :

Hv = Im−2v vH .

Hv is Hermitian (self-adjoint).

Hv is unitary and H2
v = Im.

Hv v =−v , ∀w ∈ v⊥,Hv w = w .

Application : Given u ∈ Cm with u1 = eiθ1‖u‖2, e1 ∈ Cm (first unit

vector), and v =
u−eiθ1‖u‖2e1

‖u−eiθ1‖u‖2e1‖2
,

Hv u = u1e1.

This is a basic step in the Householder QR factorization.
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Preliminaries

Preliminaries (Linear algebra) - Basic definitions

Householder-QR factorization

Reduce A ∈ Cm×m to triangular form HL A = R

A =

 ? ? ?
? ? ?
? ? ?

HL,1−−→

 � � �
� �
� �

HL,2−−→

 � � �
◦ ◦
◦


where HL,i indicates a left-multiplication by a Householder reflection. At
the end of this step we have :

HL,m−1 · · ·HL,1 A = R.

Final step : A = QR with Q = HL,1 · · ·HL,m−1.

Complexity : O(m2p) with p = min(m,n).

Parallel performance : low since heavily based on sequence of
matrix-vector operations due to Householder reflections.
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Preliminaries

Preliminaries (Parallel computing)

Main features to analyze

Data distribution.

Load balancing property of the algorithm.

Weak and strong scalability properties of the algorithm.

Resiliency and fault-tolerant properties of the algorithm.

Distributed data analysis and scientific computing

Apache Hadoop Map/Reduce (RDD : Resilient Data Distribution).

Spark Apache MLlib (Dimensionality Reduction : SVD, PCA).

Message Passing Interface (MPI).

R and Distributed R (Rmpi, RHadoop).
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Preliminaries

Preliminaries (Parallel computing)

Map/Reduce algorithms

Framework for processing parallelizable problems across large
datasets using a large number of nodes on a cluster.

Current methodology :

Map : Each worker node applies the "map()" function to the local data, and
writes the output to a temporary storage. A master node ensures that only
one copy of redundant input data is processed.
Shuffle : Worker nodes redistribute data based on the output keys
(produced by the "map()" function), such that all data belonging to one key
is located on the same worker node.
Reduce : Worker nodes now process each group of output data, per key,
in parallel.

Widely used in Big data applications.

An efficient distributed file system is usely required.
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Suggested reading

Suggested reading

A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt,
J. Kottalam, J. Liu, K. Maschhoff, S. Canon, J. Chhugani,
P. Sharma, J. Yang, J. Demmel, J. Harrell, V. Krishnamurthy and
M. Mahoney Matrix factorizations at scale : A comparison of scientific
data analytics in Spark and C+ MPI using three case studies, IEEE
International Conference on Big Data, pp. 204-213, 2016.

G. Golub, and C. Van Loan. Matrix Computations, Johns Hopkins
University, fourth edition, 2012.

G. Hager and G. Wellein. Introduction to High Performance Computing
for Scientists and Engineers, CRC Press, 2010.

V. Miele and V. Louvet. Calcul parallèle avec R, EDP Sciences, 2016.
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Fundamental matrix decompositions

Objectives and key idea

Objectives and key idea

Objectives

Review fundamental matrix decompositions that are useful for low
rank approximations.

Focus on parallel properties of the algorithms and discuss parallel
performance on modern computing platforms.

Provide first numerical illustrations in ulıa.

Key idea

Exploit the optimality property of the Singular Value Decomposition in
terms of approximation to provide a rank-k approximation of a given
matrix.
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Full SVD

Full SVD [Beltrami, 1873], [Jordan, 1874], [Sylvester, 1889], [Picard, 1910]

Given A ∈ Cm×n with p = min(m,n), the full singular value
decomposition of A reads :

A = U Σ V H ,

with U ∈ Cm×m, V ∈ Cn×n unitary (UHU = Im, V HV = In) and
Σ ∈ Rn×m.

Σ = diag(σ1, · · · ,σp) with σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0.

σi ,(i = 1,p) are called singular values of A.

The columns of U = [u1,u2, · · · ,up] are called left singular vectors :
AV = U Σ.

The columns of V = [v1,v2, · · · ,vp] are called right singular vectors :
AHU = V ΣH .

(U,Σ,V ) is called a singular triplet of A (non unique !)
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Thin SVD and truncated SVD

Thin, compact, thresholded and truncated SVD

Given A ∈ Cm×n with p = min(m,n), the thin singular value
decomposition of A reads :

A = U Σ V H ,

with U ∈ Cm×p, V ∈ Cn×p with orthonormal columns (UHU = Ip,
V HV = Ip) and Σ ∈ Rp×p a diagonal matrix.

A compact SVD only keeps the r singular triplets corresponding to
nonzero singular values (r = rank(A)).
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Thin SVD and truncated SVD

Thin, compact, thresholded and truncated SVD

Given A ∈ Cm×n with p = min(m,n), the thin singular value
decomposition of A reads :

A = U Σ V H ,

with U ∈ Cm×p, V ∈ Cn×p with orthonormal columns (UHU = Ip,
V HV = Ip) and Σ ∈ Rp×p a diagonal matrix.

A thresholded SVD only keeps the singular triplets with singular values
larger than a given positive threshold τ.
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Thin SVD and truncated SVD

Thin, compact, thresholded and truncated SVD

Given A ∈ Cm×n with p = min(m,n), the thin singular value
decomposition of A reads :

A = U Σ V H ,

with U ∈ Cm×p, V ∈ Cn×p with orthonormal columns (UHU = Ip,
V HV = Ip) and Σ ∈ Rp×p a diagonal matrix.

A truncated SVD (to rank k ) corresponds to the approximation :

Ak =
k

∑
j=1

σjujv
H
j = U(:,1 : k)Σ(1 : k ,1 : k)V (:,1 : k)H .
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Thin SVD and truncated SVD

Thin, compact, thresholded and truncated SVD

Given A ∈ Cm×n with p = min(m,n), the thin singular value
decomposition of A reads :

A = U Σ V H ,

with U ∈ Cm×p, V ∈ Cn×p with orthonormal columns (UHU = Ip,
V HV = Ip) and Σ ∈ Rp×p a diagonal matrix.

A truncated SVD (to rank k ) corresponds to the approximation :

Ak =
k

∑
j=1

σjujv
H
j = U(:,1 : k)Σ(1 : k ,1 : k)V (:,1 : k)H .

Approximation property [Eckart-Young-Mirsky theorem, 1936] :

‖A−Ak‖2 = min
rank(B)=k

‖A−B‖2 = σk+1,B ∈ Cm×n.
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Thin SVD and truncated SVD

Thin, compact, thresholded and truncated SVD

Given A ∈ Cm×n with p = min(m,n), the thin singular value
decomposition of A reads :

A = U Σ V H ,

with U ∈ Cm×p, V ∈ Cn×p with orthonormal columns (UHU = Ip,
V HV = Ip) and Σ ∈ Rp×p a diagonal matrix.

A truncated SVD (to rank k ) corresponds to the approximation :

Ak =
k

∑
j=1

σjujv
H
j = U(:,1 : k)Σ(1 : k ,1 : k)V (:,1 : k)H .

Approximation property [Eckart-Young-Mirsky theorem, 1936] :

‖A−Ak‖F = min
rank(B)=k

‖A−B‖F =
p

∑
i=k+1

σi ,B ∈ Cm×n.
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Fundamental matrix decompositions

Singular Value Decomposition (SVD)

Sketch of the standard SVD algorithm [Golub and Kahan,
1965]

First step : Reduce A ∈ Cm×n to upper bidiagonal form HL A HR = B

A
HL,1−−→


? ? ?

? ?
? ?
? ?

HR,1−−→


? ?

? ?
? ?
? ?

HL,2−−→


? ?

? ?
?
?

HL,3−−→ B

where HL,i indicates a left-multiplication by a Householder reflection
and HR,i a right-multiplication. At the end of this step we have :

HL,m−1 · · ·HL,1 A HR,1 · · ·HR,n−2 = B.

Second step : Perform a bidiagonal SVD of B as B = UBΣV H
B .

Final step : A = U Σ V H with U = HH
L UB and V = HRVB .

Complexity : O(mnp) with p = min(m,n).
Parallel performance : low since heavily based on sequence of
matrix-vector operations due to Householder reflections.
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Fundamental matrix decompositions

R-SVD

R-SVD

R-SVD [Chan, 1982]

Idea : Perform an initial QR decomposition if the matrix is sufficiently tall
relative to its width (i.e. m ≥ n with at least by a factor of 1.5).

First step : QR factorization of A ∈ Cm×n as A = QR where Q ∈ Cm×n

has orthonormal columns (QHQ = In and R ∈ Cn×n is a triangular
matrix).

Second step : SVD decomposition of R as R = URΣRV H
R .

Final step : A = U ΣR V H with U = QUR and V = VR .

Complexity : 4mn2 + 22n3.

Parallel performance : Tall and Skinny QR (TSQR) algorithm [Demmel
et al, 2012] to be favored for the first step to obtain parallel performance.
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Fundamental matrix decompositions

Polar decomposition and QR-based Dynamically Weighted Halley (QDWH)

Polar decomposition

Polar decomposition [Autonne, 1902]

Given A ∈ Cm×n with p = min(m,n), the polar decomposition of A
reads :

A = W H,

where W ∈ Cm×n has orthonormal columns and H ∈ Rn×n is Hermitian
positive semidefinite.

Relation with the SVD decomposition of A :

A = W H = W (VH ΣH V H
H ) = (WVH) ΣH V H

H .

Interest : efficient parallel iterative methods are available to first
compute the polar decomposition and then deduce the SVD
decomposition of A.
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Fundamental matrix decompositions

Polar decomposition and QR-based Dynamically Weighted Halley (QDWH)

QR-based Dynamically Weighted Halley (QDWH)

QDWH [Nakatsukasa et al, 2010] [Householder prize, 2014]

Given A ∈ Cm×n with p = min(m,n), the QR-based Dynamically
Weighted Halley `-th iteration (`≥ 1) reads (with X` ∈ Cm×n) :[ √

c` X`

In

]
=

[
Q1

Q2

]
R, X`+1 =

b`
c`

X` +
1
√

c`
(a`−

b`
c`

)Q1QH
2 , `≥ 0.

with Q1 ∈ Cm×m, Q2 ∈ Cn×m (QH
1 Q1 = Im, QH

2 Q2 = Im), R ∈ Rm×n

upper triangular and a`,b`,c` parameters chosen dynamically to
optimise the convergence rate. X0 = A

α
with α = ‖A‖2.

The polar factor W is obtained as the limit of the sequence X`. H is
deduced as H = 1

2 (W HA + (W HA)H).

The sequence is usually converging very fast in practice in double
precision arithmetic for any matrix A with κ2(A)≤ 1016).

Complexity : O(mnp)
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Fundamental matrix decompositions

UTV

UTV

UTV [Stewart, 1992]

Given A ∈ Cm×n with p = min(m,n), the UTV factorization of A reads :

A = U T V H ,

with U ∈ Cm×m, V ∈ Cn×n both unitary (UHU = Im, V HV = In) and
T ∈ Rm×n is (lower or upper) triangular.

Algorithm that is possible to stop once a specified tolerance has been
met.

Provides close to optimal low rank approximations in practice.

Complexity : O(mnk) for a rank-k approximation of A.

Parallel performance : good due to blocking (matrix-matrix operations).
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Fundamental matrix decompositions

Comparison of matrix decomposition algorithms

Comparison of matrix decomposition algorithms

Synopsis
SVD R-SVD QDWH UTV

Arithmetic cost O(mnp)

Backward stability X X X X

Ease of parallelization Hard Fairly Easy Easy
easy

Min. communication ? × × X ×

Partial factorization Not easily Yes but not × X
useful

Useful for low rank approximation X X X X
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Fundamental matrix decompositions

Afternoon session

Afternoon session

Implement in ulıa a simple communication-minimizing factorization
algorithm Cholesky-QR to be used when the matrix is tall and skinny.

This algorithm provides a QR factorization.

An SVD factorization can be then deduced easily (as in the R-SVD
algorithm).

Interest : discover how to use of Map/Reduce strategies.

Study robustness for synthetic problems with variable singular gap.

Study performance on your dataset if time permits.

Conclusions to be shared !
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Fundamental matrix decompositions

Afternoon session

Suggested reading

Suggested reading

G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and
O. Schwartz. Communication lower bounds and optimal algorithms for
numerical linear algebra , Acta Numerica. Cambridge University Press,
23, 1-155, 2014.

J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU
factorizations, SIAM Journal on Scientific Computing, Vol. 34, No 1,
2012.

N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Second edition, 2002.

Talk of L. Grigori at Collège de France :
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Low rank approximations using the Lanczos bidiagonalization

Objectives and key idea

Objectives and key idea

Objectives

Review the Lanczos bidiagonalization method that is useful for low
rank approximations of A when A is either sparse or structured or when
only the action of A and of AH on a vector is available.

Put emphasis on specific important features of the algorithm.

Focus on parallel properties of the algorithms.

Key idea

Implicitly construct a rank-k approximation of A by solving a projected
problem of reduced dimension on a particularly relevant subspace,
called the Krylov subspace Kk+1(A,v1).
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Low rank approximations using the Lanczos bidiagonalization

Partial Lanczos bidiagonalization

Partial Lanczos bidiagonalization

Partial Lanczos bidiagonalization [Björck, 1996] - decomposition

Given v1 ∈ Cn with ‖v1‖2 = 1 and A ∈ Cm×n, the Lanczos
bidiagonalization algorithm implicitly leads to the decomposition
(k ≥ 1) :

AVk = Uk Bk ,

AHUk = Vk BT
k + βk vk+1eT

k

with Uk ∈ Cm×k ,Vk ∈ Cn×k with orthonormal columns (UH
k Uk = Ik ,

V H
k Vk = Ik ), Bk ∈ Rk×k being upper bidiagonal and vk+1 ∈ Cn

Bk =


α1 β1

α2
. . .
. . . βk−1

αk

 .
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Low rank approximations using the Lanczos bidiagonalization

Partial Lanczos bidiagonalization

Partial Lanczos bidiagonalization method - algorithm (basic version)

Input : A ∈ Cm×n, v1 ∈ Cn with ‖v1‖2 = 1
Output : Partial Lanczos bidiagonal decomposition with
Uk = [u1, · · · ,uk ] ∈ Cm×k ,Vk+1 = [v1, · · · ,vk+1] ∈ Cn×k with orthonormal
columns and Bk ∈ Rk×k upper bidiagonal

β0 = 0,u0 = 0
for j = 1,k do

uj = Avj −βj−1uj−1

αj = ‖uj‖2

uj = uj/αj

vj+1 = AHuj −αjvj

βj = ‖vj+1‖2

vj+1 = vj+1/βj

end for

Simple algorithm ...
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Partial Lanczos bidiagonalization

Partial Lanczos bidiagonalization method - algorithm (basic version)

Input : A ∈ Cm×n, v1 ∈ Cn with ‖v1‖2 = 1
Output : Partial Lanczos bidiagonal decomposition with
Uk = [u1, · · · ,uk ] ∈ Cm×k ,Vk+1 = [v1, · · · ,vk+1] ∈ Cn×k with orthonormal
columns and Bk ∈ Rk×k upper bidiagonal

β0 = 0,u0 = 0
for j = 1,k do

uj = Avj −βj−1uj−1

αj = ‖uj‖2

uj = uj/αj

vj+1 = AHuj −αjvj

βj = ‖vj+1‖2

vj+1 = vj+1/βj

end for

Simple algorithm ... that is prone to roundoff error propagation due to
loss of orthogonality in Uk and Vk .
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Low rank approximations using the Lanczos bidiagonalization

Partial Lanczos bidiagonalization with reorthogonalization

Main features of the Lanczos bidiagonalization method

The Lanczos bidiagonalization method delivers a low rank approximation
with a complexity that linearly depends on the number of iterations k .

Only products with A or AH and matrix-vector operations are required,
which leads to a fairly easy parallel implementation.

The storage is quite reduced.

Drawbacks of the Lanczos bidiagonalization method

The Lanczos bidiagonalization method is prone to roundoff error
propagation. This leads to a loss of orthogonality in Uk and Vk .

A first cure is to use selective or complete reorthogonalization
techniques to limit the roundoff error propagation during the algorithm.

A second cure consists of stopping the algorithm after a certain number
of iterations and of restarting by exploiting meaningful information (thick
restarting).
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Low rank approximations using the Lanczos bidiagonalization

Partial Lanczos bidiagonalization with reorthogonalization

Partial Lanczos bidiagonalization method with FULL orthogonalization
[changes with respect to the basic version are highlighted in color]

for j = 1,k do
uj = Avj

for i = 1, j−1 do
γ = uH

i uj

uj = uj − γ ui

end for
αj = ‖uj‖2

uj = uj/αj

vj+1 = AHuj

for i = 1, j do
γ = vH

i vj+1

vj+1 = vj+1− γ vi

end for
βj = ‖vj+1‖2

vj+1 = vj+1/βj

end for
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Low rank approximations using the Lanczos bidiagonalization

Partial Lanczos bidiagonalization with reorthogonalization

Partial Lanczos bidiagonalization method with ONE-SIDED
orthogonalization [changes with respect to the basic version are
highlighted in color]

β0 = 0,u0 = 0
for j = 1,k do

uj = Avj −βj−1uj−1

αj = ‖uj‖2

uj = uj/αj

vj+1 = AHuj

for i = 1, j do
γ = vH

i vj+1

vj+1 = vj+1− γvi

end for
βj = ‖vj+1‖2

vj+1 = vj+1/βj

end for
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Low rank approximations using the Lanczos bidiagonalization

Lanczos bidiagonalization with thick restarting and reorthogonalization

Partial Lanczos bidiagonalization method with thick restarting and
reorthogonalization

They must be favored with respect to standard Lanczos
bidiagonalization methods !

Their parallel performance is however limited by the
reorthogonalization procedure, which can be costly in a massively
parallel environment.

Their complexity heavily depends on the repartition of the leading
singular values of A.

Software : SLEPc.
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Low rank approximations using the Lanczos bidiagonalization

Krylov Golub-Kahan decomposition

Krylov Golub-Kahan decomposition

Krylov Golub-Kahan decomposition [Stoll, 2012]

Given v1 ∈ Cn of unit Euclidean norm, we consider the Lanczos
bidiagonalization decomposition :

AVk = Uk Bk ,

AHUk = Vk BT
k + βk vk+1eT

k .

We perform the SVD decomposition of the small bidiagonal matrix
Bk ∈ Rk×k as Bk = Pk Σk QT

K .

This leads to the Krylov Golub-Kahan decomposition :

AṼk = Ũk Σk ,

AH Ũk = Ṽk Σk + βk vk+1pT
k

with Ũk = Uk Pk , ŨH
k Ũk = Ik , Ṽk = Vk Qk , Ṽ H

k Ṽk = Ik , pT
k = eT

k Pk and
Σk ∈ Rk×k being diagonal.
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Low rank approximations using the Lanczos bidiagonalization

Krylov Golub-Kahan decomposition

Krylov Golub-Kahan decomposition

Krylov Golub-Kahan decomposition [Stoll, 2012]

The Krylov Golub-Kahan decomposition is extremely convenient for
implementing deflation, an important feature to improve convergence
that can be tedious to implement in other decompositions.

Deflation : if l singular values are of interest, we decide to lock (keep)
them, otherwise we purge them. This corresponds to a simple
permutation matrix Π of Σk as :

Σ̂k = ΠT Σk Π = diag(σ1, · · · ,σl , · · · ,σk ), (l ≤ k)

This then leads to the Krylov Golub-Kahan shrinked decomposition :

AV̂l = Ûl Σ̂l ,

AH Ûl = V̂l Σ̂l + βlvl+1p̂T
l

The factorization can then be expanded from dimension l to k .
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Low rank approximations using the Lanczos bidiagonalization

Krylov Golub-Kahan decomposition

Suggested reading

Suggested reading

A. Björck. Numerical Methods for Least Squares Problems, SIAM,
Philadelphia, 1996.

V. Hernandez, J. Roman, A. Tomas. Restarted Lanczos
Bidiagonalization for the SVD in SLEPc, SLEPc Technical Report
STR-8, 2007. Available at
http://slepc.upv.es/documentation/reports/str8.pdf.
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Low rank approximations using the symmetric eigenvalue decomposition

Objectives and key idea

Objectives and key idea

Objectives

Why selecting this approach ? : Much better performance in terms of
parallelization for the approaches based on the symmetric eigenvalue
decomposition can be expected with respect to standard factorization
methods.

Discuss both sparse and dense aspects of these methods.

Focus on parallel properties of the algorithms.

Key idea

Deduce all or selected singular values/vectors of A as the result of a
standard eigenproblem to be detailed.
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Low rank approximations using the symmetric eigenvalue decomposition

Formulation of the matrix eigenvalue problem

Formulation of the matrix eigenvalue problem

Cross-product formulation

Idea : to retrieve a low rank approximation by solving a standard
Hermitian eigenvalue problem for which efficient deterministic parallel
methods are available.

Given A ∈ Cm×n with m ≥ n, the cross-product eigenvalue
formulation reads :

AHA x = λx ,

where x ∈ Cn is an eigenvector of AHA associated with the eigenvalue
λ ∈ R+. AHA is called the Gram matrix.

This yields AHAV = V Λ with Λ ∈ Rk×k diagonal.

Singular values are given by λi = σ2
i .

Case of m ≤ n : AAH x = λx .
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Low rank approximations using the symmetric eigenvalue decomposition

Formulation of the matrix eigenvalue problem

Formulation of the matrix eigenvalue problem

Cyclic formulation

Idea : to retrieve a low rank approximation by solving a Hermitian
eigenvalue problem for which efficient deterministic parallel methods are
available.

Given A ∈ Cm×n with m ≥ n, the cyclic eigenvalue formulation reads :[
0m×m A

AH 0n×n

][
ui

vi

]
= λi

[
ui

vi

]
,

where

[
ui

vi

]
∈ Cm+n is an eigenvector of the augmented matrix C

associated with the eigenvalue λi ∈ R.

This yields CVC = VCΛ with Λ ∈ Rk×k diagonal.

λi (C) = σi (A) =−λn+m−i+1(C) and 0.
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Low rank approximations using the symmetric eigenvalue decomposition

Standard algorithm for the Hermitian eigendecomposition

Standard algorithm for the Hermitian
eigendecomposition : Householder tridiagonalization

First step : Reduction of C ∈ Cn×n to tridiagonal form HL C HR = T

C
H1−→


? ?
? ? ? ?

? ? ?
? ? ?

H2−→


? ?
? ? ?

? ? ?
? ?

≡ T

where Hi indicates a two-sided Householder transformation. At the
end of this step we have C = HTHH with :

H = Hn−2 · · ·H1.

Second step : Eigendecomposition of T as T = QT ΛQH
T

Final step : C = (HQT ) Λ (HQT )H .
Complexity : O(n3).
Parallel performance : relatively low in the first step and high in the
second step (Divide and conquer [Cuppen, 1981], MRRR [Dhillon et al,
2006]).
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Low rank approximations using the symmetric eigenvalue decomposition

Subspace iteration method

Subspace iteration method

Subspace iteration method
Input : ` > 1, C ∈ Cn×n, V1 ∈ Cn×k with V H

1 V1 = Ik
Output : Orthonormal basis V` ∈ Cn×k

for j = 1, `−1 do
Wj = CVj

Compute the QR decomposition of Wj as Wj = Vj+1Rj+1

end for

Eigenvalue extraction from Galerkin condition Cv−µv ⊥ V`,v ∈ V`

µ is an eigenvalue of the k× k matrix V H
` CV`

v = V`w with ‖w‖2 = 1, eigenvector of V H
` CV` associated with µ.

µ and v are called Ritz value and Ritz vector, respectively.

The basic subspace iteration extracts k Ritz pairs which are close to the
dominant eigenvalues/eigenvectors of C.
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Low rank approximations using the symmetric eigenvalue decomposition

Lanczos tridiagonalization

Lanczos tridiagonalization

Lanczos method (basic version)
Input : C ∈ Cn×n or the action of C on a vector, v1 ∈ Cn with ‖v1‖2 = 1
Output : orthonormal basis Vk+1 = [v1, · · · ,vk+1] of Kk+1(C,v1)

for j = 1,k do
zj = Cvj

αj = vH
j zj

ṽj+1 = zj −αjvj

if j > 1 then
ṽj+1 = ṽj+1−βj−1vj−1

end if
βj = ‖ṽj+1‖2

vj+1 = ṽj+1/βj

end for
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Low rank approximations using the symmetric eigenvalue decomposition

Lanczos tridiagonalization

Lanczos tridiagonalization

Lanczos decomposition

The Lanczos algorithm leads to the decomposition :

CVk = Vk Hk + β̂k vk+1eT
k

with Hk being symmetric and tridiagonal :

Hk =


α̂1 β̂1

β̂1 α̂2
. . .

. . .
. . . β̂k−1

β̂k−1 α̂k

 .

The eigenpairs (µj ,wj ) of Hk = V H
k CVk are called Ritz pairs (Ritz values

and Ritz vectors, respectively). They provide approximate spectral
information of C.

Convergence of Ritz pairs (which part of the spectrum ?) + difficulties
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Low rank approximations using the symmetric eigenvalue decomposition

Lanczos tridiagonalization

Lanczos tridiagonalization

Lanczos decomposition with complete/selective reorthogonalization

Complete reorthogonalization is an effective but expensive cure

Require to store the complete basis Vk (i.e. k vectors)

The computational cost grows from O(mvp + nk) to O(mvp + nk2)

Paige (1990) : Consider a k -order Lanczos decomposition computed in
floating point arithmetic with machine precision εmach. The Ritz pairs
(µ1,w1), · · · ,(µk ,wk ) satisfy

wH
i wk+1 =

O(εmach ‖C‖2)

‖ri‖2
, i = 1, · · · ,k

with ri = Cwi −µiwi

This suggests the use of selective reorthogonalization only versus
converged Ritz pairs (within

√
ε).
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Low rank approximations using the symmetric eigenvalue decomposition

Contour integration spectrum slicing methods

Contour integration spectrum slicing (CISS) methods

CISS [Sakurai and Sugiura [2003], Polizzi [2009]]

Locate and compute the eigenvalues within a given region of interest
with contour C .

Indicator function of C : f (z) =− 1
2iπ

∫
C

(µ− z)−1dµ, z /∈ C .

f (z) = 1,z ∈ C , f (z) = 0, otherwise.

Numerical approximation of the spectral projector
D =− 1

2iπ

∫
C (zIn−C)−1dz by Gauss quadrature

D̂ =
N

∑
j=0

wj (zj In−C)−1,

where N + 1 is the number of contour points, zj the quadrature points on
C and wj the quadrature weights, respectively.
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Low rank approximations using the symmetric eigenvalue decomposition

Contour integration spectrum slicing methods

Contour integration spectrum slicing (CISS) methods

Algorithm (Hermitian case) formulated as a filtered subspace iteration

We define the density matrix (spectral projector) as :

D =− 1
2πi

∫
C

G(z)dz with G(z) = (zIn−C)−1.

(a) Pick Yn×M = [y1, · · · ,yM ] M random vectors of Cn.

(b) Compute Q an approximation of D Yn×M by numerical integration :

Q =
N

∑
j=0

wj (zj In−C)−1Yn×M .

(c) Solve the projected generalized Hermitian eigenproblem (of size
M×M) :

QHCQ pi = λi (QHQ) pi

with (λi ,xi = Qpi ) is a putative eigenpair of C.

Check if λi ∈ C , and go back to step (b) using Y = X = [x1, · · · ,xM ] if
needed.
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Low rank approximations using the symmetric eigenvalue decomposition

Contour integration spectrum slicing methods

Contour integration spectrum slicing (CISS) methods

Main properties

Fast and systematic convergence in the Hermitian case : using 8 to
16 contour points, the algorithm converges in 2−3 iterations only to
obtain up to thousands of eigenpairs (if exist) with machine accuracy.

Naturally captures all multiplicities.

No (explicit) orthogonalization procedure required.

Natural parallelism at various levels (C , N + 1 contour points, solution of
linear systems).

Allow the use of (parallel) iterative methods for solving the complex
linear systems.

Drawback : use of complex arithmetic for solving a symmetric
real-valued eigenproblem (cross-product formulation).

Xavier Vasseur (ISAE-SUPAERO, Toulouse) September 27 2017 37 / 62



Low rank approximations using the symmetric eigenvalue decomposition

Afternoon session

Outline

1 Objectives and preliminaries

2 Fundamental matrix decompositions

3 Low rank approximations using the Lanczos bidiagonalization

4 Low rank approximations using the symmetric eigenvalue decomposition
Objectives and key idea
Formulation of the matrix eigenvalue problem
Standard algorithm for the Hermitian eigendecomposition
Subspace iteration method
Lanczos tridiagonalization
Contour integration spectrum slicing methods
Afternoon session
Your notes

5 Software

6 Conclusions

7 References

Xavier Vasseur (ISAE-SUPAERO, Toulouse) September 27 2017 37 / 62



Low rank approximations using the symmetric eigenvalue decomposition

Afternoon session

Afternoon session

Experiment the two different strategies for the eigendecomposition
(Lanczos based or CISS based) with two different codes that are
publicly available.

Synthetic test matrices are provided for easy testing.

Study robustness for synthetic problems with variable singular gap.

Study performance on your dataset if time permits.

Requirements : your matrix must be stored in HDF5 or MatrixMarket
formats.

Conclusions to be shared !
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Suggested reading

Z. Bai et al. Templates for the Solution of Algebraic Eigenvalue
Problems : A Practical Guide., SIAM, 2000.

Y. Saad. Numerical Methods for Large Eigenvalue Problems, SIAM,
2011.

E. Polizzi. Density-matrix-based algorithms for solving eigenvalue
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T. Sakurai and H. Sugiura. A projection method for generalized
eigenvalue problems, J. Comput. Appl. Math., Vol. 159, pp. 119-128,
2003.

P. T. P. Tang and E. Polizzi. FEAST as a subspace iteration eigensolver
accelerated by approximate spectral projection. SIAM J. Matrix Anal.
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Software

Parallel software for dense linear algebra problem

CANDMC

CANDMC (Communication Avoiding Numerical Dense Matrix
Computations)

https://github.com/solomonik/CANDMC

E. Solomonik (Univerity of Illinois, USA)

Dense linear algebra software

Special focus on communication avoiding algorithms (LU, QR and
symmetric eigendecomposition)

Implementation of TSQR algorithm

Written in C++

Last version : 2016, BSD licence

Householder prize in 2017
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Software

Parallel software for dense linear algebra problem

Chameleon

Chameleon

https://project.inria.fr/chameleon/

Joint project : ICL (University of Tenessee), INRIA, KAUST, University of
Colorado

Dense linear algebra software relying on sequential task-based
algorithms where subtasks of the overall algorithms are submitted to a
runtime system

General paradigm (Direct Acyclic Graph (DAG)) used on very different
type of architectures : laptop, many-core nodes, CPUs-GPUs, multiple
nodes

Chameleon is able to perform a Cholesky factorization
(double-precision) at 80 TFlop/s on a dense matrix of order 400000

Written in C++, C and Python

Last version : 0.9.0 in June 2016, Cecill-C licence
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Parallel software for dense linear algebra problem

DPLASMA

DPLASMA

https://www.icl.utk.edu/dplasma

ICL (University of Tenessee)

Dense linear algebra software relying on sequential task-based
algorithms

General paradigm (Direct Acyclic Graph (DAG)) used on very different
type of architectures

Cholesky, QR and TSQR factorizations

Written in Fortran, C, C++

Last version : 1.2.0 in May 2014
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Parallel software for the singular value decomposition

Elemental

Elemental

https://wwww.libelemental.org

Elemental is open-source, openly-developed, software for
distributed-memory dense and sparse-direct linear algebra and
optimization which supports a wide range of functionality not available
elsewhere.

Support for “double-double”, “quad-double”, quad-precision, and
arbitrary-precision floating-point arithmetic.

Research oriented software with a focus on recent algorithms.

General software (decomposition, SVD and eigendecomposition).

Written in C++.

Last version : 0.87.7 in February 2017.

Xavier Vasseur (ISAE-SUPAERO, Toulouse) September 27 2017 44 / 62

https://wwww.libelemental.org


Software

Parallel software for the singular value decomposition

IRLBA

IRLBA (Implicitly Restarted Lanczos Bidiagonalization Algorithm)

https://cran.r-project.org/web/packages/irlba/

Implementation of the algorithm proposed in [Baglama and Reichel,
2005]

Dense and sparse matrices are considered

Lanczos bidiagonalization with selective reorthogonalization and thick
restarting

Distributed memory implementation

Written in R.

Python version available at https://github.com/bwlewis/irlbpy

Last version : 2.2.1 in May 2017, GPL3 license.
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Parallel software for the singular value decomposition

QR_MUMPS

QR_MUMPS

http://buttari.perso.enseeiht.fr/qr_mumps/

A. Buttari (IRIT, Toulouse)

Applicable to sparse matrices.

Parallel, multithreaded software based on the StarPU runtime engine.

Asynchronous and dynamic data-flow programming model which
provides high efficiency and scalability.

Written in Fortran.

Last version : 2.0 in June 2016.

Xavier Vasseur (ISAE-SUPAERO, Toulouse) September 27 2017 46 / 62

http://buttari.perso.enseeiht.fr/qr_mumps/


Software

Parallel software for the Hermitian eigendecomposition

Outline

1 Objectives and preliminaries

2 Fundamental matrix decompositions

3 Low rank approximations using the Lanczos bidiagonalization

4 Low rank approximations using the symmetric eigenvalue decomposition

5 Software
Parallel software for dense linear algebra problem
Parallel software for the singular value decomposition
Parallel software for the Hermitian eigendecomposition
Your notes

6 Conclusions

7 References
Xavier Vasseur (ISAE-SUPAERO, Toulouse) September 27 2017 46 / 62



Software

Parallel software for the Hermitian eigendecomposition

ARPACK

ARPACK (Arnoldi Package)

http://www.caam.rice.edu/software/ARPACK/

R. Lehoucq, K. Maschhoff, D. Sorensen and C. Yang, Rice University,
USA.

Sparse and dense linear algebra. Include routines for the SVD.

Based on reverse communication interface.

Written in Fortran 77.

Last version : BSD license.

Current suported library : https ://github.com/opencollab/arpack-ng
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Parallel software for the Hermitian eigendecomposition

ELPA

ELPA (Eigenvalue SoLvers for Petaflop-Applications)

https://elpa.mpcdf.mpg.de/

Joint project in Germany (Max Planck Gesellschaft and several
universities).

Dense linear algebra.

Provide highly efficient and highly scalable direct eigensolvers for
symmetric matrices based on standard algorithms.

Target massively parallel architectures.

Written in Fortran (C/C++ interface available).

Last version : 2017.05 in May 2017, LGPL license.
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Parallel software for the Hermitian eigendecomposition

FEAST

FEAST

http://www.feast-solver.org/

University of Amherst, USA

Contour Integral Spectrum slicing method

Dense and sparse linear algebra

Free high-performance numerical library for solving the Hermitian and
non-Hermitian eigenvalue problems, and obtaining all the eigenvalues
and (right/left) eigenvectors within a given search interval or arbitrary
domain in the complex plane

It includes flexible reverse communication interfaces and ready to use
predefined interfaces for dense, banded and sparse systems.

Versions for shared and distributed memory platforms

Written in Fortran

Last version : 3.0 in June 2015, BSD license.
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Parallel software for the Hermitian eigendecomposition

SLEPc

SLEPc (Scalable Library for Eigenvalue Problem Computations)

http://slepc.upv.es/

University Politècnica de València, Spain

Sparse linear algebra

Software library for the solution of large scale sparse eigenvalue
problems on parallel computers. It can also be used for computing a
partial SVD of a large, sparse, rectangular matrix.

Extension of PETSc http://www.mcs.anl.gov/petsc/.

Versions based on the PETSc data structures which employs the MPI
standard for message-passing communication.

Main language : C.

Last version : slepc-3.7.4 in May 2017, LGPL license.
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Software

Parallel software for the Hermitian eigendecomposition

Spectra and RSpectra

Spectra (Sparse Eigenvalue Computation Toolkit as a Redesigned
ARPACK)

http://spectralib.org/

C++ library for large scale eigenvalue problems, built on top of Eigen
http://eigen.tuxfamily.org, an open source linear algebra library.

Appropriate for the computation of few eigenvalues and corresponding
eigenvectors of large and sparse matrices based on the Implicitly
Restarted Arnoldi Method

Dense and sparse linear algebra

Available in R as RSpectra https:
//cran.r-project.org/web/packages/RSpectra/index.html

Partial SVD is also provided (’svds’ function) in RSpectra

https://bwlewis.github.io/irlba/comparison.html

Last version : 0.12-0 in June 2016, MPL2 license.
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Software

Parallel software for the Hermitian eigendecomposition

z-Pares

z-Pares

http://zpares.cs.tsukuba.ac.jp/

University of Tsukuba, Japan.

Contour Integral Spectrum slicing method.

z-Pares is designed to compute eigenvalues and eigenvectors of sparse
or dense matrices.

Single precision and double precision are supported.

Versions for distributed memory platforms.

Written in Fortran 90/95.

Last version : v0.9.6a in October 2014.
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Conclusions

Conclusions

Summary

We have first reviewed popular fundamental rank-revealing matrix
decompositions (Section 2).

We have focused on deterministic methods for low rank
approximations with an emphasis on parallel methods (Sections 3 and
4).

We have shortly described a few related parallel software libraries
(Section 5).

We have mostly focused on the SVD due to its optimal approximation
property. Other deterministic close to optimal algorithms have been
proposed (two popular examples follow).
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Deterministic algorithms for dimensionality reduction

Nonnegative matrix factorization (NMF) [Lee et al, 1999]

Goal : retain both sparseness and interpretability in the factorization,
contrary to the SVD which leads to dense factors.

Idea : Impose a particular constraint in the factored form of A (e.g.
nonnegativity, sparsity, weights, regularization or restriction to nonzero
entries).

Example : Find C ∈ Cm×k and H ∈ Ck×n such that :

min
C,H
‖A−CH‖F , C,H ≥ 0,

i.e. C,H are entry-wise nonnegative matrices.

This leads to a non-convex optimization problem.

C is usually selected as a subset of the columns of A, if A has
nonnegative entries.

Applications in image processing, medical imaging, astronomy.
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Deterministic algorithms for dimensionality reduction

Skeleton decomposition : CUR/CX factorizations [Mahoney et al, 2009]

Idea : Impose a particular structure for the factored form of A expressed
in terms of a small number of actual columns/rows of A. If A is sparse,
this keeps sparseness !

CZ factorization : Find C ∈ Cm×k and Z ∈ Ck×n such that :

min
C,Z
‖A−CZ‖F .

C is usually selected as a relevant subset of the columns of A.

Current algorithms lead to the upper bound :
‖A−CZ‖F ≤ (1 + ε)‖A−Ak‖F , where Ak is the best rank-k
approximation of A and ε positive.

Applications in astronomy, genetics, mass spectrometry imaging.
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Larger Picture

Algorithms for dimensionality reduction

This is an active research area from different perspectives

Linear algebra : Randomized algorithms (see the lecture of Pierre
Blanchard).

Multilinear algebra : Low-rank tensor approximations (canonical
polyadic factorization and Tucker decomposition).

Numerical optimization : Solve the minimization problem in large
dimension with deterministic or stochastic gradient descent formulations.

Machine learning : Current strong activity on deep learning algorithms
for dimensionality reduction.

Statistical learning algorithms.

Thank you for your attention !
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