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Outline

» Friedrichs’ systems (steady linear PDEs)

>

>
>
>

design of dG methods

convergence analysis for smooth solutions

unified view on linear stabilization

cf. [AE & Guermond, 06-..], [Di Pietro & AE, 12]

» dG in time (time-dependent linear PDEs)

>

>

convergence analysis for smooth solutions
cf. [AE & Schieweck, 15]

» Weighting linear stabilization (conservation laws)

>

>
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linear stabilization for rough solutions/nonlinear PDEs
cf. [AE & Guermond, 13]
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Friedrichs’ systems

Friedrichs’ systems

» Open, bounded, connected, strongly Lipschitz subset Q c R?

» K™-valued functions, m>1and K=R or C

v

(d + 1) functions IC, {Ak}lgkgd :Q — Kmxm

> K, {A}i<k<q and X = 3¢ 9 AX are bounded
» AF is symmetric (Hermitian)
» K+ K% — & is uniformly positive (> 207T)

v

Given f: Q = K™, find u: Q - K" st. Au=f in Q with

d
Au=Ku—+ ZAkBku

k=1

>
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Friedrichs’ systems

Examples

» Advection-reaction m=1, K=R
» pu+B3-Vu=f
> peL® BEL® VBEL®, n—IVB>p>0

» Darcy (grad-div) m=d+1, K=R

» u=(o,p), d™lo +Vp=f, up+Vo=h
> u € L and uniformly positive, d bounded, symmetric, uniformly
positive definite

» Maxwell (eddy currents, curl-curl) m=6, K=C
» u=(E,H), cE—-VxH =1, iwvuH+ VXE=0
> o, € L, uniformly positive (for simplicity)
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Friedrichs’ systems

Boundary conditions

» Symmetric boundary field A/ : 9Q — K™ (n unit outward normal)
st. N =37 ne Ak

> Assume there is an additional boundary field M : 92 — K™ s.t.
> (real part of) M is non-negative
> ker(M — N) + ker(M + N) = K"

» The boundary condition is (M — AN)u =0 on 9Q

» Examples

» advection-reaction Nu = (8-n)u, Mu = |B-n|u

Darcy N (o, p) = (pn,o-n), M(o, p) = (£pn, Fo-n)

Maxwell N(E,H) = (Hxn,Exn), M(E,H) = (zHxn, FExn)
note that M is skew-symmetric for Darcy and Maxwell

>
>
>
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Friedrichs’ systems

Mathematical theory
» [2-based theory: pivot space L = L?(Q;K™)

> Graph space V={vel|AveL}
> Friedrichs’ operator Av = Kv + ZZ:I AXOv
> formal adjoint Av = (K™ — X)v — 327 Akokv
» AAc L(V;L)

» Boundary operators N, M € L(V; V')
> (Nv,w)yr vy = (Av,w) — (V,AW)L
» (Mv,v)ys v >0 and ker(M — N) + ker(M + N) = V
» L-dissipativity on ker(M — N): (Av,v). > pol[v|i + 2(Mv,v)y v
» Given f € L, there is a unique u € V s.t.
Au="f (M—Nu=0

(and there is a unique & € V s.t. Al = f and (M* + N)ii = 0)
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Friedrichs’ systems

dG setting

» Admissible mesh sequence {7p}r>0
» matching simplicial meshes: Ciarlet's shape-regularity
> general meshes (non-matching, polyhedral) : shape- and

contact-regularity, essentially one length scale for mesh faces and
cells [Di Pietro & AE, 12]

> usual FE tools: inverse & discrete trace ineq., polynomial approx.
» Broken polynomial space (of order r > 0)
P (ThR) = {vy € XU R) | vi|7T €P(T;R)VT € T}

» Jumps and averages at mesh interfaces

F=0T;NoT,

ng points from T, to T,

{v}=1LiWlr, +vir,) T,
[V] = V|T/ - V|Tr T

Alexandre Ern
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Friedrichs’ systems

dG approximation: centered fluxes
» Standard Galerkin setting with V}, = P,(7p; K™)

Find u, € V s.t. af,f(uh, Wh) = (f, Wh)L for all wy, € Vp

with discrete bilinear form af satisfying two key properties
» exact consistency aif(u, wp) = (F, wa), Ywy € V4,
> L-dissipativity a; (va, va) > iol|vall7 + 3(Mva, vi)i(a0), Yvh € Vi

» Centered fluxes (interfaces F € F}) and boundary penalty (F € Fp)
a5 (v W) = D (Vi Awn) iyt D (D), Wl ey+ D (62 (vh), wh)i(r)

TeTh FeFi FeFp

> ¢r(vn) = Nefva}t (for AR, ¢'(vi) = (B-nr){vi})
> $p(vh) = 3(My — N)vi, My = M = |B-n| for AR, M adds
least-squares penalty on BC for Darcy and Maxwell

» For smooth solution u € H™1(Q; K™),

lu— uplle S A"
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Friedrichs’ systems

Linear stabilization (upwinding)

» Upwinding amounts to adding a least-squares penalty on interface
jumps [Brezzi et al., 04]

an(vh, wh) = a5 (v, wa) + Y (SE[val, [wal)i(r)
FeF}

with Sg ~ |NE|, so that

> ay is still exactly consistent
> a, enjoys strengthened L-dissipativity

1
an(vi i) = Ival® = pollvillf + 5 (M, vi)iom) + D= 157 el )
FeF}
» Incidence on the flux: ¢%-(v;) = Ne{vi}} + Selva]

» for AR, Sr = 1|B-n| leads to ¢f(v) = (B-nF)u}
» for Darcy, jumps of both o-ne and pj, are penalized
> for Maxwell, jumps of both H,xngr and E,xng are penalized
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Friedrichs’ systems

Error analysis with upwinding

>

v

v

v

v
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Assume smooth solution u € H™1(Q; K™)

Strengthened L-dissipativity leads to [|u — up|| < h+1/? —
quasi-optimal L-norm estimate

Full stability norm and discrete inf-sup stability

ah(Vha Wh)
Ivalls S sup 2ol
B ey wall:

Ivally = Ival® + > hrllAvallFr
TETh

Vv, € V

We obtain [|u — u,||; < h™1/? — optimal graph-norm estimate

For mixed elliptic PDEs, it is possible to modify the penalty strategy
so as to eliminate locally the auxiliary variable

Université Paris-Est, CERMICS
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Friedrichs’ systems

Unified view on linear stabilization

» Many recent H-conforming stabilized FEM are analyzed with the
same tools and lead to similar error estimates

» Example: Continuous interior penalty
AP (v wh) = (v Awn)e + > (SFIVVL VW) ey + D (8R(vi), wh)i(r)
FeF} FeFp

> penalizes gradient jumps with Sp ~ h?
> cf. [Burman & Hansbo, 04; Burman, 05; Burman & AE, 07]

» Other examples

» Subgrid Viscosity penalizes gradient of subscale fluctuation,
cf. [Guermond, 99]

> Local Projection Stabilization penalizes subscale fluctuation of
gradient, cf. [Braack & Burman, 06; Matthies et al., 07]

» Stabilization bilinear form is symmetric (contrast with GaLS/SUPG)
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Time-dependent linear PDEs

Overview

v

v

Main results

v

Some analysis tools

» Error estimates for smooth solutions
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dG in time

» Time semi-discretization of evolution problem by dG method

> piecewise polynomials in time of order k > 0

> time interval / = (0, T] decomposed as | = U1,

> subintervals I, = (t,—1, tn] (open at left, closed at right endpoint)
> discrete times 0 =tp < t; < --- < ty = T, time steps 7, = t, — th—1

» For Banach space B (functions in space), let

k
Pi(ln,B) ={w:l, = B : w(t)=>_ W/t vtel, WeB, v}
j=0
XKB)={w, :1—= B: w.|;, €Pi(l,,B) Vn}
> a function w, € X¥(B) can be discontinuous at discrete times t,

and is continuous from the left at all t,
> jump of w, at t, is [wr]n = wr(t) — wr(t,)
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Evolution problems with coercivity

» Parabolic problems: dG in time (order k), dG in space (order r)
[Thomée, 07]
> (°°(L?) (at discrete time nodes) and L*(L?) error estimates of order
(731 4+ h™*1): super-convergence in time

» Nonlinear advection-diffusion, dG in space
> (°°(L?) and L?(L?) estimates of order (7*** + h") on time-varying
meshes (under condition h* < 7) [Feistauer et al., 11-.]

» Linear advection-diffusion, Hl—conforming FEM with LPS
» (°°(L?) and L?(L?) estimates of order (7**1 4+ h"™/2 4 £1/2p") on
static meshes [Ahmed, Matthies, Tobiska & Xie, 11]

Alexandre Ern Université Paris-Est, CERMICS
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Evolution problems without coercivity

» Linear first-order operator Av = uv 4+ B8-Vv in space

> 1 :Q — Ris a bounded reaction function
» B8:Q — R?is a given Lipschitz advection field
> both are time-independent

» Mathematical setting of Friedrichs' systems (spaces V and L)

» Linear evolution problem

> data f € C°([0, T],L) and up € V
» find u € C°([0, T], V) n CX([0, T], L) s.t.

(Beu(t),v), + (Au(t),v), = (f(t),v), Vvel Vte(0,T)

and u(0) = wo
> well-posedness results from Hille—=Yosida Theorem
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dG-in-time semi-discretization

» Time semi-discrete solution u, belongs to X*(V/)
» Foralln=1...N, u;|, € Px(ln, V) s.t. for all v; € Py(/p, L),
/ (Orur + Aur, v,), dt + ([uT]n,l., vT(t;ll))L = / (f,ve), dt

In In

(k + 1) coupled first-order PDEs in space within each time step

» RHS evaluated using the (k 4+ 1)-point right-sided GR quadrature on
each subinterval /,

k+1
T ~
g) = 5” Z W, g(th,) =~ // g(t)dt
p=1 "
> weights Wy, > 0, thx+1 = ta, Qn(g) exact for all g € Pox(/n, R)

» Time semi-discrete problem with quadrature becomes

[ @ce A e+ ([urdaa, v (650), = Qu(Fve)0)

Ji,
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Full space-time discretization

» Discrete space V] C L built from a mesh 7,” which can change from
one time interval to the next

» FEM with linear stabilization (dG, CIP, ...)

> Ap VY — VY st (ARve, wi) = ap(vi, wy) (af depends on 7, ...)

» Fully discrete problem: u.p|;, € Pi(l,, V[) s.t. for all
vrn € Pe(l, V) and all n=1... N,

/ (aturh + AZUTh', V‘rh)L dt + ([Urh]n—ls VTh(t,J,ll))L - Qn((fa VTh)L)
J1,
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Example: dG(1) in time

» On each time interval /,, we can solve for the two unknowns
U, = urm(tag) €V j=1,2
» The coupled (2x2)-block system reads
UL+ ZAUL, + LUR, = Urn(tp—1) + ZPf(tn1)
- 3U; + U2, + BANUR, = —ur(ta1) + ZPRF(tn2)
4 “hn 2 “Yhn 2 “Yh%hn Th\th—1 > Fp n,2

where P} is the L-orthogonal projector onto V'

Alexandre Ern Université Paris-Est, CERMICS

DG for first-order PDEs



Main results

» Improved and new error estimates for smooth solutions

> polynomial order k > 1 in time
> unified analysis for FEM with linear stabilization in space

» Two main analysis tools in time

> post-processed, time-continuous discrete solution L, u-p
> special time-interoplate RE*1y of order (k + 1)

» (°°(L?) and L?(L?) estimates for (u — L, u.p)
» super-convergent bound of order (752 4 h™*1/2) on static meshes
> novel estimate on projection error for time-varying meshes

» Estimates on error derivatives (on static meshes)
> bound on (d;u — L,0:L,uyp) of order (77 + h™1/2) in £°°(L?) and
in L2(L%)
> optimal bound on the discrete graph norm of (v — Lru-p)

Alexandre Ern
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Comparison with RK methods (1)

» Explicit RK methods in time combined with dG in space (and
suitable limiters) [Cockburn, Shu et al., 89-..]

» Explicit time-marching schemes are conditionally stable

> error bounds require Gronwall’s argument
> error constant blows up exponentially in T

» Analysis of explicit RK2 and RK3 schemes: ¢°°(L?) estimates

> nonlinear conservation laws and dG in space [Zhang & Shu, 04, 10]
Friedrichs' systems, stabilized FEM [Burman, AE & Fernandez, 10]
O(7% 4 h"™"*/?) for RK2 under tightened CFL condition 7 = O(h*/?)
for RK2 with r = 1, usual CFL suffices (7 = O(h))
O(7% 4 h™1/?) for RK3 under usual CFL
no unified analysis available for arbitrary order in time

>
>
>
>
>
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Comparison with RK methods (2)

» Advantages of time-dG schemes are

» unconditional stability

super-convergent error estimates

error constants behave as T1/2

unified analysis for all polynomial orders k > 1 (implicit Euler
corresponding to k = 0 being slightly different)

vvYyyvy

» The prize to pay is increased computational cost

> can be tamed by efficient multigrid solvers
> heat, Stokes and NS equations [Hussain, Schieweck & Turek, 11, 12]

» Implicit RK schemes share various advantages with dG in time
> recent analysis for linear Maxwell equations [Hochbruck & PaZur, 15]
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Analysis tools

» Recall X¥(B) ={w, : I = B: w,| €Py(l,,B),¥Vn=1...N}

l,
» Lifting operator
L, X5(B) — XSH(B)n C(1, B)
such that £, w,(0) = w,(0) and, forall n=1... N,
Lowr(t) = wr(t) — [wrln—19n(t) VYVt €l = (tn—1, tn]

where 9, € Pxi1(/h, R), 9,(tn—1) = 1 and vanishes at the (k+1) RS
GR points, so that £, w,(ts,) = wr(t,,) forall p=1...(k+1)

> The fully discrete problem can be rewritten as

/ (OtﬁTuTh + AZUT},, Vrh)L dt = Q,,((f, Vv—h)L)
In
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A higher-order time interpolate (1)
» Let uc C}(I,B)

» Step 1. Choose a Lagrange/Hermite interpolate [X*2u € CY(I, B)
such that, for all n=1... N, I**2y|, € Py, 2(l,, B) and

I72u(t,) = u(t,) and Oel*2u(t,) = Oeu(t,)
> for k = 1, these conditions fully determine Iff*zu inl,
» for k > 2, values at additional Lagrange nodes in I, are prescribed
» for k = 0, this construction is not possible
» Step 2. Define RAT1u|;, € Pyy1(/n, B) by the (k + 2) conditions
O R u(t, ) = 0:15 2u(tn,)  Yu=1...(k+1)

REu(try) = 17 2u(t )

and set R¥*1u(0) = u(0)

Université Paris-Est, CERMICS
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A higher-order time interpolate (2)

» Continuity: RSy € CO(1, B) and REFLu(t,) = u(t,) for all
n=0...N

» Approximation of smooth functions

lu = Rl cogg, 3y S 702 lul ez, )

~J
|0t — atRiH—luHCO(L,B) S Trlw(+1|u|Ck+2(7,,$B)

> Stability: |RET Ul gy S llull i, gy for all ue C(In, B)
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£>°(L?) and L?(L?) error estimates

» Static meshes

» Post-processed error &€ = u— L up: Forallm=1...N,
&t} < (o) + tm max {CT (w72 CH(u)h "} + hot

and under the mild assumption 7, < 7,_1,

~

T 2(k+2) S 2r+1
810y S (B0 + T max { CF(u)r )+ C(u) |

» For the error (u — u, ), same super-convergent bound in ¢>°(L?),
but only optimal (7% 4+ h"*+1/2) bound in L2(L?)

» Super-convergence does not hold for implicit Euler (k = 0)
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Time-varying meshes
» Time-varying meshes lead to an additional projection error

> Assume that 7," is created from 7,”~! by local refinements and
coarsenings (using a common finest mesh)

» The local (in time) projection error is defined as

-1 “1
EP(u) = sup (utn ) = Py~ ulto-2), v = T3 wh),
n n—1
vhE VY [[vh — T~ val[L

» NP1 VP 4+ VP — V7! denotes an L2-stable, linear
quasi-interpolation operator

» Lagrange interpolate for H!-conf. FEM, L2-projection for dG

> local projection error vanishes if there is only mesh coarsening

» The global projection error entering the ¢°°(L?) and L?(L?) error
estimates is (Ep,,(u))? = > (EY(v))?
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Bound on projection error

ref .
» Decompose mesh as 7,” = 7,7 U 7,"“* where T,"“* collects mesh
cells in 7,7 that can be decomposed into one or more cells of 771"_1

> Quasi-interpolation operator satisfies (vj — I'szlvh) |K =0,
Vv, € V), VYK € T,"°

» On dG spaces, the local projection error is bounded as
B (u) S 10 12 ()2 { (i) 22t e o }
and on H'-conforming spaces, it is bounded as

EP (u) < (B2 L (ha) 2ty ) s

» The bound on dG spaces can exploit that, often in practice,
|| < hef (up to a slightly stronger regularity on u)

Université Paris-Est, CERMICS
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Estimates on error derivatives

» Bounds on error derivatives are rarely explored in the literature
» Assume static meshes

» General methodology
> derive super-convergent (in time) £°°(L?) and L?(L?) error bounds on
time-derivative
> infer optimal (in time) discrete graph-norm error estimate using
discrete inf-sup stability
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Estimate on time derivative

» Key idea: error on time-derivative is defined as

e =0 — L O0Lrurp

» Forallm=1...N,

[&(tm) 2 S (Bo)*+ tm max {CT(u, 7204 4 CH(u)h? ]+ hot
<n<m

and under the mild assumption 7, < 7,_1,

H@H%Z(I,L) S (BEo)* + TI?HaSXN {C,:f(u, F)r2tet) 4 C,?(u)h”“}
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Discrete graph norm error estimate

» Recall discrete inf-sup stability with stability norm
Ivally = Ivall® + > hrlB-Vwallz 7
TETh
» (2(V)-estimate on & = u — L, u,p,: Forall m=1...N,

m

> Qn(lE8) S (o) + t max {CF(u, 720D 4 CH(upp 1}

n=1

» This bound is optimal in time and exhibits the usual (quasi-)optimal
behavior in space for steady problems
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Weighting LS

Weighting linear stabilization

Motivations

v

v

Weighting LS: theory

v

Weighting LS: numerics

» We focus on Continuous Interior Penalty, but conjecture most
conclusions extend to other LS

Université Paris-Est, CERMICS
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Motivations

» LS adds least-squares penalty to standard Galerkin FEM

> acts as a high-order dissipation (in contrast to first-order viscosity)
> LS is very effective for linear first-order PDEs with smooth data

» The situation is not so bright when it comes to solving

> linear problems with non-smooth data
> nonlinear problems with non-unique weak solutions

» LS promotes the Gibbs phenomenon, leading to

» spurious oscillations in the vicinity of shocks
» failure to satisfy a maximum principle
> convergence to non-entropic weak solutions

Alexandre Ern
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Weighting LS

Nonlinear viscosity

» LS is often supplemented by some nonlinear viscosity technique

» shock-capturing [Hughes & Mallet, 86; Johnson & Szepessy, 87]

» crosswind diffusion [Codina, 93; Burman & AE, 02; Burman, 07]

> entropy viscosity [Guermond, 08; G. & Pasquetti, 08; G., Pasquetti
& Popov, 11]

» It is not clear that LS and nonlinear viscosity work hand in hand

> Numerical tests indicate they can antagonize each other

Université Paris-Est, CERMICS
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Weighting LS

Some illustrations
» Nonlinear conservation law

Oru+VAF(u)=0 (x,t) eQ2x(0,T)
Ule—o = Up x e

(1)

Q open polyhedral domain in RY; f € C}(R; RY)

no issues with BCs (either periodic or compactly supported wo)
we assume that (1) admits a unique weak entropic solution

we consider space semi-discretization

vy vy VvVYy

» Galerkin solution uj, € CY([0, T]; Vi) s.t. up|t—0 = o 4 and
/ w0y, dS2 +/ w,,Vf(uh)dQ =0 Yw, €V, Vte (0, T)
Q Q

with H!-conforming FE space V (of order r)
... globally polluted by spurious oscillations
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Weighting LS

Viscous solution

» Viscous solution
/ W/-,@tuh dQ —|—/ WhV'f(uh) dQ + nvisc(uh; Wh) =0
Q Q
with

Puisc(Vi Wh) = Comax Y hTIIf’(vh)HLoo(r)/ Vvp-Vw,dT
TeTh T

> typically Cmax = 5 in 1D and Cmax = 4 in 2D

» for linear transport, f(vs) = Bv, so that ||f'(vh)||eo (1) = [|Blleo(7)

. only first-order accurate
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Weighting LS

CIP stabilized solution

» CIP stabilized solution

/ whOup, dS2 +/ WhV-f(uh) dQ + nc|p(uh; Wh) =0
Q Q
with
nc|p(vh; Wh) = ccrp Z h%—‘Hf/(Vh)HL%(F)/ [Vvh].[th] dF
; F
FeF]

> typically, ccrp = 0.05

... O(h™1/2) [*-estimates for linear transport and smooth solutions
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Weighting LS

Entropy-viscosity solution
» Entropy-viscosity solution (nonlinear stabilization)

/ whOrup dQ + / wpV-F(up) dQ + nentr(Up; tp, wy) =0
Q

Q
with

Nentr(Zh; Vi, Wh) = Z VT(Zh)/ Vvp-Vw,dT
TETh T

and v7(z) is designed s.t.
I/T(Zh) = min(cmax()’r(zh)hr, CHVDT(Z;,)hzT)

and B1(zn) = |If'(zn)||L<(7), D7(2n) is the local residual for a
chosen entropy (e.g., the quadratic one)

.. weak maximum principle (proof in 1D)

[un(t)ll (@) < lluollLo(a) + ch®
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[llustration of difficulties

» Numerical tests in 1D

> linear transport with non-smooth data
> nonlinear transport with composite wave (non-convex flux)
» CIP stabilization and first-order viscosity

» Time discretization is performed using SSP RK3
> (very) small time steps to avoid time discretization errors

» The mass matrix is never lumped

Alexandre Ern Université Pari
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Weighting LS

Linear transport with non-smooth data |

> Ot + Ot =0, u(x,0) = 1(0.4,0.7), periodic BCs, and T =1
Galerkin v CIP

zoom

1

\
aul
‘ \ VL
| |
I | VoL
)/ [\ N
\ L
Lo \\‘
B 1 P remn v

o

» Stabilizing capability of CIP stabilization, but inability to counter
Gibbs phenomenon

» Maximum principle indicators at final time
eMax = maxup(x, T) —1 eMin = —minup(x, T
Max e h( 3 ) Min YeQ h( ) )

remain bounded away from zero for CIP

Alexandre Ern
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Weighting LS

Linear transport with non-smooth data Il

h entropy entropy + CIP
Max rate €Max rate
2.500E-03 | 6.715E-03 - 1.597E-02 -
1.250E-03 | 5.434E-03 0.305 | 1.600E-02 -0.003
6.250E-04 | 2.854E-03 0.929 | 1.633E-02 -0.030
3.125E-04 | 2.235E-03 0.353 | 1.626E-02  0.006
1.563E-04 | 1.785E-03  0.324 | 1.646E-02 -0.017

> Entropy-viscosity solution satisfies a weak maximum principle

» Adding CIP to entropy-viscosity, the WMP is lost!
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Weighting LS

Nonlinear transport with composite wave |

» Riemann problem with non-convex flux (S-shaped)

1 _ i 1
Flu) = 2u(l—u) ; ff Lll <53 olx) = 0 x€10,0.35]
su(u—1)+ 5 if53<u 1 x€(0.351]

—

N =

» Entropy solution at T = 1 is composed of a shock wave followed
by a rarefaction wave

» Many second-order central schemes with limiters converge to a
non-entropic (weak) solution

> e.g., central upwind with second-order reconstruction and either
superbee or minmod?2 limiters [Kurganov, Petrova & Popov, 07]
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Weighting LS

Nonlinear transport with composite wave I

» Uniform mesh with 1000 cells, SSP RK3 with CFL = 0.01
cIp

» The CIP-stabilized solution converges to a non-entropic solution
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DG for first-order PDEs



Nonlinear transport with composite wave Il|

entropy entropy + CIP zoom

» Entropy-viscosity solution converges to (correct) entropic solution

» Adding CIP destroys this property!
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Weighting LS

CIP stabilization and first-order viscosity
» CIP can have adverse effects even on first-order viscosity

» (Inviscid) Burgers equation with u(x,0) = sin(27x), 200 mesh
cells, r =1, CFL = 0.025
> adding CIP to 1st-order visc. leads to over/under-shoots
> Cmax = 2 makes 1st-order visc. overcome Gibbs phenomenon
triggered by CIP

» Riemann problem with non-convex flux, 4,000 and 10,000 cells
» viscous solution converges to entropic solution (as expected!)
» adding CIP stabilization destroys this property

Burgers non-convex flux
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Conclusions from numerical tests

» CIP does a great job at suppressing oscillations in smooth regions

» It promotes the Gibbs phenomenon

> failure to satisfy a (weak) maximum principle
> convergence to non-entropic weak solutions

> These effects can even overcome convergent viscosity methods (both
nonlinear and first-order)
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Key idea

» Temper the amount of LS in the vicinity of shocks
> nonlinear weights depending on the local gradient of discrete
solution
> may seem counter-intuitive at first glance since LS is often motivated
to counter spurious oscillations near large gradients ...

» We show that CIP stabilization can be tempered in such a way that

> O(h"'/?) [*-error estimates are preserved for smooth solutions in
linear problems [proof]
> LS no longer antagonizes nonlinear viscosity methods [numerics]

» This is a win-win situation

> nonlinear viscosity alone does not deliver full-order accuracy in
smooth regions
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Weighting LS

Theoretical insight

» Weighted CIP-stabilized solution

/ wpOrup dQQ + / WhV~f(uh) dQ2 + nweiyed(uh; up, Wh) =0
Q Q
with

Nweied(Zh; Vi, Wh) = Ccrp E a(gF(Zh))h%Hf,(Vh)”L“/ [Vvp]-[Vwp] dF
; F
FeF,

where gr(zp) = [(Vzn)ar|/€(uo) is a local measure of Vz, around F
> The weighting function « is non-increasing and
IAN>0, (r>n)=(afr)> r*)‘)

« cannot decrease too fast (typically «(0) =1 and a(o0) = 0)
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Weighting LS

Convergence analysis

» Linear transport, smooth solutions

» Forall t € [0, T], with e = u — u,

ot

el + | Mutcaluniece)dr 427
0
with
» forall A >0, ifd=2orifd=3and r>3
» for d =3 and r € {1,2}, upper bound is h""* with € € (0, 3) and
A€ (0,2) forr=2and A€ (0,2)ifr=1

» Proof on quasi-uniform meshes

Alexandre Ern Université Paris-Est, CERMICS
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Weighting LS

Principle of proof |

» Classical techniques lead to
d, 0 .
g el + weiealun e, ) < RHS(Q) S A'lle] ()

where control on nyeied(up; €, €) is not yet used

> Let € > 0 and consider the sets collecting “bad” and “good” cells

QF = {gr(un) > h™°}
Q =0\

Q¥ collects mesh cells where the gradient of vy, is locally high
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Weighting LS

Principle of proof Il

» On Q°, owing to the behavior of weighting function «, there is
enough CIP stabilization to infer that

RHS(Q’) < Rt ed(un; e, e)2
» On QF, the following holds:
RHS(QY) < A% |QF7 and |QF] < p20179)
since [|[Vul|2(qty and [[Vel|2(qt are bounded
> This yields

d
”e”L? 4 Pei ed(Uhv e, e) < h3r71+€ + h2r+17>\€

Choose € to equilibrate both terms and derive an improved error
estimate O(h"**), and then use a bootstrap argument

Alexandre Ern Université Paris-Est, CERMICS

DG for first-order PDEs



Numerical examples

» We study the effectiveness of the weighted CIP-stabilization on
> linear transport with smooth data
> linear transport with non-smooth data
> nonlinear transport with composite wave

» 1D and 2D tests are considered

Alexandre Ern
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Weighting LS

1D tests |

» Q= (0,1) with periodic BCs, r = 1, SSP RK3 with CFL = 0.2

> stab. parameters ccip = 0.05, cmax = 0.5, and ¢y = 0.5

» Linear transport with smooth data, CIP stabilization with and
without weighting

llell 2y ~ H lelli2(q) ~ H

» Linear transport with non-smooth data, entropy viscosity plus
CIP stabilization, uniform and non-uniform meshes

lell i) ~ h*" lell 2y ~ h**7

and weak maximum principle is satisfied (with rate h%-5)
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1D tests Il

» Riemann problem with non-convex flux
> five uniform meshes from 100 up to 1,600 cells

> entropy viscosity plus CIP stabilization
zoom

entropy + CIP

» Convergence to the (correct) entropic solution

Université Pari
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2D tests |

» Linear transport (rotating velocity field in unit disk)
» re{1,2}, RK4, CFL = 0.25
> stab. parameters ccip = 0.025, Cmax = %, and c.v = 0.1

» CIP stabilization with and without weighting leads to optimal
convergence on smooth solutions

» Entropy viscosity plus weighted CIP stabilization
> r = 1: entropy viscosity alone and with CIP is second-order
» r =2: entropy viscosity alone is h*"¢, while adding CIP improves CV
at least to h*® — win-win situation

Université Paris-Est, CERMICS
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2D tests |l

» Linear transport, non-smooth data, entropy visc. + CIP, r € {1,2}

» CV rates (in L'-norm, rates are h>7® for r = 1 and h%8 for r = 2)

h r=1 r=2
[2-norm rate [2-norm rate
5.00E-02 | 4.172E-01 - 2.794E-01 -
2.50E-02 | 3.158E-01 0.402 | 2.114E-01 0.402
1.25E-02 | 2.411E-01 0.389 | 1.601E-01 0.401
1.00E-02 | 2.214E-01 0.383 | 1.466E-01 0.394

» Weak maximum principle for enax (similar results for enin)

h r=1 r=2

EMax rate EMax rate
5.00E-02 | 3.546E-02 - 7.904E-03 -
2.50E-02 1.283E-02 1.467 | 6.943E-03 0.187
1.25E-02 | 7.776E-02 0.722 | 5.953E-03 0.222
1.00E-02 | 6.798E-02 0.603 | 5.211E-03 0.596
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2D tests Il

» Cauchy problem in R? with non-convex flux

. 351 x2+y?<1
f(u) = (sinu,cosu) - ulx,y,0) = {0 257 otherwise

entr. visc entr. visc+CIP entr. visc+weighted CIP
=N
)

\\4}}% | \Z \%ﬁ//%

> entropy viscosity (Cmax = 3, Cev = 1) predicts correct rotating
composite wave structure

> adding CIP (ccip = 1) leads to non-physical layers

» weighting CIP pushes spurious layer back to the shock

7>

S\

///
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Conclusions

> In the literature, much efforts are devoted to constructing LS
techniques in various flavors

> [t is often believed that LS is the workhorse, whereas
shock-capturing is only meant to remove remaining oscillations

> We believe that
> nonlinear viscosities should be the workhorses killing the Gibbs
phenomenon and ensuring convergence to the entropic solution
> LS plays the role of an auxiliary tool whose job is to improve
convergence in smooth regions
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