
Visualisation scientifique parallèle de gros volumes de données
December 2017

Jean M. Favre, CSCS

Presentation of CSCS

CSCS, home of “Piz Daint”, the Swiss flagship for national HPC Service

 Cray XC40/XC50

 #3 of the Top500 list in november 2017

 5320 hybrid nodes (Intel Xeon E5-2690 v3/Nvidia Tesla P100)

 1788 multi-core nodes (Intel Xeon E5-2695 v4)

 Piz_daint_one_of_the_most_powerful_supercomputers_in_the_world

3

http://www.cscs.ch/publications/highlights/2017/piz_daint_one_of_the_most_powerful_supercomputers_in_the_world/index.html

Outline of the presentation

Best practices in parallel visualization
 Parallelization on the node (SMP)

 Understanding, and fine-tuning the I/O. Managing the pipeline.

 MPI-based parallelization. The do’s and dont’s

 Parallel Rendering libraries

 in-situ visualization

 Conclusion

4

Footnote

Mes commentaires et divagations sur le thème sont le fruit de longues années
passées a observer les méthodes utilisées par de nombreux utilisateurs du CSCS
et a ma passion pour promouvoir une utilisation sensée et la plus efficace possible
de deux solutions de visualisation open-source,

ParaView: www.paraview.com

VisIt: https://wci.llnl.gov/simulation/computer-codes/visit

5

Parallel visualization is managed in two ways

 Client-server and batch mode execution of MPI-based data filtering and
rendering engines are a must for big data.
 How big is “big”?

 Yet, many users still use the desktop version of VisIt or ParaView. A quick review
of on-the-node parallelism is of actuality.

6

SMP parallelism

7

SPH Particle clouds to slices

 The vtkSPHInterpolator filter uses SPH
(smooth particle hydrodynamics) kernels to
interpolate a data source onto an input
structure.

 A Point locator is a crucial part of the
execution path, to accelerate queries about
points and their neighbors.

 The execution of a plane interpolation has
been tested on a multi-core node, using
parallelism-on-the-node with Intel TBB.

 Compute node: dual socket Intel® Xeon® E5-
2695 v4 @ 2.10GHz (18 cores)

9

SPH data interpolation

0

20

40

60

80

100

120

140

160

180

Execution (seconds)

VTK’s SMPTools

Shared memory parallel algorithms were kick-started in 2013
vtkDepthImageToPointCloud, vtkShepardMethod, vtkGaussianSplatter, vtkCheckerboardSplatter,
vtkImageHistogram, vtkImageDifference, vtkStatisticalOutlierRemoval, vtkPointOccupancyFilter,

vtkVoxelGrid, vtkExtractHierarchicalBins, vtkPCACurvatureEstimation, vtkSPHInterpolator,
vtkRadiusOutlierRemoval, vtkPointDensityFilter, vtkSignedDistance, vtkExtractPoints,
vtkFitImplicitFunction, vtkUnsignedDistance, vtkPCANormalEstimation, vtkPointInterpolator,
vtkPointCloudFilter, vtkHierarchicalBinningFilter, vtkMaskPointsFilter, vtkPointInterpolator2D,
vtkExtractSurface, vtkDensifyPointCloudFilter, vtkFlyingEdgesPlaneCutter, vtkSimpleElevationFilter,
vtkVectorDot, vtkFlyingEdges3D, vtkPlaneCutter, vtkVectorNorm, vtkFlyingEdges2D,
vtkElevationFilter, vtkSampleImplicitFunctionFilter, vtkSortDataArray, vtkSortFieldData,
vtkStaticPointLocator, vtkStaticCellLocator

As of VTK-8, VTK-m is now opening to multiple back-ends and different implementations (CUDA,)

10

A side-note on visualization pipelines

11

The Visualization Pipeline

From a survey article by Ken Moreland, IEEE Transactions on
Visualizations and Computer Graphics, vol 19. no 3, March 2013

«A visualization pipeline embodies a dataflow network in which
computation is described as a collection of executable modules
that are connected in a directed graph representing how data
moves between modules. There are threee types of modules:
sources, filters and sinks.»

12

Visualization Pipeline: Definitions

 Modules are functional units, with 0 or more inputs ports and
0 or more output ports.

 Connections are directional attachments between input and
output ports.

 Execution management is inherent in the pipeline

 Event-driven
 Demand-driven

13

Visualization Pipeline: Data Parallelism

 Data parallelism partitions the input data into a set number of pieces, and
replicates the pipeline for each piece.

 Some filters will have to exchange information (e.g. GhostCellGenerator)

14

Understanding, and fine-tuning the I/O

The parallel I/O before the visualization

 Did you chose your data format?

 Did you chose the visualization application?

 Do you know how the file(s) is being read? Distributed among parallel tasks?

Does your file format enable load-on-demand?

 VisIt will inquire about spatial extents, and if available, the visualization pipeline is
by-passed for the extents outside the range

17

Does your file format enable load-on-demand?

1 2 N… …

Data filtering &
geometry mapping

Rendering

Selection of partitions
and assignments to
processors

Data extents (min & max) are
examined and the visualization
pipeline is by-passed for those
outside the range

18

MPI tasks, ghost-cells, hyperslabs

 Grids are sub-divided with ghost regions/cells

 Ghost cells/nodes are usually not archived

 The User is responsible for managing the subdivisions and know what to archive

Example: a 12-processor run

© CSCS 2012 - 19

MPI tasks, ghost-cells, hyperslabs

Example: a 4-processor run

Example with a plasma simulation output

Four different read modes are
implemented:

• radial,
• toroidal,
• poloidal,
• kd-tree

Example reading a BOV file in VisIt

Read a single block in a single file, but split the block in pieces
Cube dimension = 640x640x640
Bricklets = 80x80x80
Divide_brick = true
Modes: stride = 8, random, block

22

Distributed data and Streaming

 Large data (when dividable) can be treated by
pieces. The Source will distribute data pieces to
multiple execution engines

 VTK differentiates between three types of sources:
 DON’T KNOW HOW TO DISTRIBUTE DATA
 CAN_HANDLE_PIECE_REQUEST() (56 in ParaView)
 CAN_PRODUCE_SUB_EXTENT() (16 in ParaView)

Wiki article: VTK-Parallel_Pipeline

Data Source

1 2 N… …

Data Filters

Data Mappers

Rendering

23

https://www.vtk.org/Wiki/VTK/Parallel_Pipeline

Question for the audience

VTK distinguishes between two formats:
 Legacy format (*.vtk)
 XML-based format (more modern, enable distributed storage, compression, etc.)

Which format enable transparent distribution when read in parallel?
1. The XML Binary Image format *.vti ?
2. The XML Binary Unstructured Mesh format *.vtu ?

 1
 2
 Both 1) and 2)

24

Parallel processing will enable
requests for any subsets,
including ghost-cells

Structured grids are split by IJK Extents

25

XML output example with ghost cells

<VTKFile type="PStructuredGrid" version="0.1">
<PStructuredGrid WholeExtent="0 65 0 65 0 65" GhostLevel="1">

<Piece Extent=" 0 17 0 17 0 65" Source="d0372_00.vts"/>
<Piece Extent="16 33 0 17 0 65" Source="d0372_01.vts"/>
<Piece Extent="32 49 0 17 0 65" Source="d0372_02.vts"/>
<Piece Extent="48 65 0 17 0 65" Source="d0372_03.vts"/>
<Piece Extent=" 0 17 16 33 0 65" Source="d0372_04.vts"/>
<Piece Extent="16 33 16 33 0 65" Source="d0372_05.vts"/>
<Piece Extent="32 49 16 33 0 65" Source="d0372_06.vts"/>

….
</PStructuredGrid>
</VTKFile>

26

Assumption:

ParaView can read the data on
any number of processors

Yes….but

Example for a Rectilinear Grid

27

Running on 8 pvservers

28

Optimizing the reading order (X, Y or Z)

Reading 15 Gb of data with 12 cpus, with HDF5
hyperslabs

X hyperslabs: average read: 430 secs

Y hyperslabs: average read: 142 secs

Z hyperslabs: average read: 36 secs

Parallel Visualization is ALL about file I/O 

29

Zooming into the interesting zone

How much data was read, isosurfaced, and never displayed in this picture?

30

Adjusting the Data Extents…

Reading much less
data

display only 1/40-th
of the data volume

25 millions instead
of one billion cells

31

 The meaning of “pieces” can vary
 If ghost cells cannot be generated by the

reader, ParaView has two filters

 D3,
 GhostCellGenerator.

Unstructured grids are split into N pieces

32

Reading particle data

33

Eschew simplicity

 If the I/O is too simple, there might be a very high cost…

 Two examples:

 Example 1: ASCII output

34

Example 2: a finite element code stores its results in Xdmf/HDF5

 Mixed elements
 Connectivity given

<Topology TopologyType="Mixed" Dimensions="3">
<DataItem Dimensions="18" NumberType="Int" Precision="8" Format="XML">
7 0 1 2 3 4 # code for pyramid
8 1 5 6 2 7 8 # code for wedge
6 5 9 11 10 # code for tetra
</DataItem>
</Topology>

Unfortunately, the Connectivity required by VTK is different

CONNECTIVITY = np.array([5, 0,1,2,3,4,

6, 1,5,6,2,7,8,

4, 5, 9, 11, 10])

VTK_PYRAMID = 14, VTK_WEDGE = 13, VTK_TETRA = 10

CELL_TYPES = np.array([VTK_PYRAMID, VTK_WEDGE, VTK_TETRA],
dtype=np.ubyte)

CELL_OFFSETS = np.array([0, 6, 13])

output.SetCells(CELL_TYPES, CELL_OFFSETS, CONNECTIVITY)

reader must convert and re-shuffle

Read from HDF5 file:

CONNECTIVITY = [7, 0,1,2,3,4,

8, 1,5,6,2,7,8,

6, 5, 9, 11, 10]

Converted to

CONNECTIVITY = [5, 0,1,2,3,4,

6, 1,5,6,2,7,8,

4, 5, 9, 11, 10]

Parallel data filtering

Visualization of a large hemisphere of points (3.8 Billion particles)

Scientific Data Visualization Tutorial 39

Visualization of a large hemisphere of points

 3,873,074,670 particles

 16 nodes (64GB RAM, 16GB GPU RAM)
are a minimum

 The standard way of using ParaView is
doomed for immediate failure:
 Read the data, display the data
 Calculate the magnitude of velocity, display

the data
 Find the high velocity particles, display the

data

40

Visualization of a large hemisphere of points

Solution on N pvservers:
 Each of the N paraview server holds one poly-vertex cell with 1/N of the particles
 Do not display the data.

 Calculate the magnitude of velocity
numpy.linalg.norm(inputs[0].PointData["Velocity"], axis=1)

 Extract the high velocity particles => 16 cells with 377 M particles (1/10th of original size)
data = inputs[0].PointData[“mag_velocity“]
indices = np.where(data > 1000.)
output.Points = inputs[0].Points[indices]
output.PointData.append(data[indices], ‘high_velocity’)

=> Render these particles with OSPRay and shadows for high visual perception

41

Can I use the VTK-numpy interface in parallel?

How do I find the global min and max of a scalar field?

 Use numpy algorithms directly, and use mpi4py to do the proper reduction

42

 Use VTK’s algorithms module.

from vtk.numpy_interface import algorithms as algs
_min = algs.min(data)

All algorithms in the numpy_interface.algorithms module work in parallel.

Moving down the visualization pipeline

 In previous slides, we focused on parallel data filtering,
without seeing any data

 We now move down the pipeline, and examine data
visually.

43

44

Very large geometry creation and rendering

45

The visualization pipeline is created interactively, adding more modules

Parallel Reader

Parallel Surface Extraction

Parallel Smoother

Parallel Image Generation

The artifacts due to discontinuities are resolved thanks to ghost cells

Parallel Reader

Ghost Cell Generation

Parallel Surface Extraction

Parallel Smoother

Parallel Image Generation

There remains visual boundaries due to illumination artifacts

Parallel Reader

Ghost Cell Generation

Parallel Surface Extraction

Generate Normals

Parallel Smoother

Parallel Image Generation

After 2 re-execution of the visualization pipelines….

We have this!

49

But we want this!

Need a rendering library to do shadows and ambient light occlusion

Must use ray-tracing techniques to do
visibility computing

 NVIDIA OptiX available (only) in VTK

 Intel OSPRay integrated in ParaView

50

Volume rendering strategies

51

Understand the visualization
technique and its
implementation

heard too many times:

“Volume rendering does
not work!!!”

“Volume rendering crashes
all the time!!!”

52

Volume
rendering
is a
technique
which
requires a
very light
hand…

53

DNS of a sheared thermal convection

54

From the 2017 Gallery of Fluid Motion, APS Division of Fluid Dynamics
https://gfm.aps.org/meetings/dfd-2017/59b69eceb8ac316d38841b9c

https://gfm.aps.org/meetings/dfd-2017/59b69eceb8ac316d38841b9c

55

3D grid
257*1024*1280

Occupies 1.3 GB

56

3D grid
257*1024*1280

Occupies 1.3 GB

A single slice
through it occupies
5.2 MB

Total = 1.3GB

57

Only read a 1D grid
1*1024*1280

Occupies 5.2 MB

Total = 5.2 MB

Substitute XDMF with h5py

 Reduced space I/O operations are easily
implemented with numpy/h5py

 ParaView’s XDMF3 reader does not distribute
data among parallel servers. It duplicates the
data everywhere.

58

Details about the rendering

 The computation took place on a rectilinear grid.
 But ParaView implements Volume Rendering of rectilinear data using hexahedra

cells, i.e using the very slow unstructured cell volume rendering

 Re-sampled the data to a regular, cartesian grid…and while doing that, change
the resolution from 257x1024x1280 to 256x1024x1280

 In summary…the data I/O strategy was developed on-the-fly during several
weeks of testing, benchmarking.

 The final movie production took place in a few hours with temporal and spatial
parallelism.

59

Volume rendering was tested with three parallel libraries

 Kitware’s native GPU-based renderer

 NVIDIA IndeX GPU-based renderer

 Intel OSPRay CPU-based renderer (12-core Broadwell (two threads per core))

 Running on 16 nodes:
 ParaView’s native renderer runs at 106 frames/sec
 Index IndeX runs at 45 frames/sec
 OSPRay runs at 21 frames/sec

60

Volume rendering was tested with three parallel libraries

 Running on 1 node, with a 1024^3 volume:
 ParaView converts 32-bit floats to 16-bit integers

 Memory consumption by GPU (see nvidia-smi)
 Kitware’s native renderer: 2722 MiB
 NVIDIA Index Volume Renderer: 15948 MiB

GPU-based rendering will scale across nodes, at the condition that it fits in memory

Intel OSPRay CPU-based renderer can use a lot more memory (thus read much bigger data).
It’s on the CPU.

61

Volume rendering of Unstructured grid

62

 The Projected Tetrahedra mapper
is almost 30 years old.

 Although today’s implementation
are very sophisticated, using
OpenGL shaders and other GPU
optimizations techniques, it
remains a slow rendering
technique because of the sheer
size of the triangles in the scene

Volume rendering Unstructured grids with NVIDIA’s IndeX

Although currently limited to 32-bit floats, I was
able to volume render a mesh of 770 million
tetrahedra, in real time, using 64 GPUs

https://developer.nvidia.com/index

http://www.nvidia.com/object/index-paraview-
plugin.html

ftp://ftp.cscs.ch/out/jfavre/NVIDIA/IndexVolume
Rendering.avi

63

https://developer.nvidia.com/index
http://www.nvidia.com/object/index-paraview-plugin.html
ftp://ftp.cscs.ch/out/jfavre/NVIDIA/IndexVolumeRendering.avi

Real time screen capture

64

Curious to try?

65

Where is IndeX leading us?

Scientific Data Visualization Tutorial 66

Where is IndeX leading us?

67

 A library such as NVIDIA’s Index would sit on the “end”
of the Visualization pipeline, i.e. the rendering side

 A more general approach is to be able to embed the
standard visualization (filters and geometry mappers)
closer to the simulation’s data.

68

When there is too much data…

 Several strategies are available to mitigate the data problem:
• read less data:

• multi-resolution,
• on-demand streaming,

• out-of-core, etc...

• Do no read data from disk but from memory:
in-situ visualization

in-situ visualization

Instrument parallel simulations to:

 Eliminate (or reduce) I/O to and from disks

 Use all grid data with or without ghost-cells

 Have access to all time steps, all variables

 Use the available parallel compute nodes, or a secondary resource

Loosely Coupled in-situ Processing (old definition)

 I/O layer stages data into secondary
memory buffers, possibly on other
compute nodes

 Visualization applications access the
buffers and obtain data

 Separates visualization processing from
simulation processing

 Copies and moves data

Simulation

data

Memory buffer

data

I/O Layer

Possible network boundary

Visualization tool

read

Tightly Coupled Custom in-situ Processing (old definition)

 Custom visualization routines are developed
specifically for the simulation and are called
as subroutines
 Create best visual representation
 Optimized for data layout

 Tendency to concentrate on very specific
visualization scenarios

 Write once, use once

Simulation

data

Visualization
Routines

images, etc

Tightly Coupled General in-situ Processing (old definition)

 Simulation uses data adapter layer to make
data suitable for general purpose
visualization library

 Rich feature set can be called by the
simulation

 Operate directly on the simulation’s data
arrays when possible

 Write once, use many times

images, etc

Simulation

data

Data Adapter

General
Visualization

Library

The In Situ Terminology Project
project lEADER: Hank Childs

Next 2 slides thanks to Hank Childs

Project Participants (to date)

In-situ references
 ParaView Catalyst
 VisIt libsim
 ADIOS and GLEAN both provide tools for in situ I/O and some analysis
 The SENSEI project

 enables connection of simulation data sources to visualization and analysis back ends
 data model enables viz & analysis codes to access data through a unified API

SENSEI – http://www.sensei-insitu.org/
Software repo – https://gitlab.kitware.com/sensei/sensei
GLEAN – https://www.alcf.anl.gov/glean
ADIOS – https://www.olcf.ornl.gov/center-projects/adios/
VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim
ParaView Catalyst – http://www.paraview.org/in-situ/

77

Using the in-situ terminology defined earlier

Visit’s libsim, can be defined as being

 Application-aware

 On-the-node

 With direct access (shallow copy or deep copy) to the data

 Using Time-division

 With human-in-the-loop (blocking) or batch execution

 Providing different outputs (subset, transforms, derived, etc)

Li
bs

im
R

un
tim

e

Coupling of Simulations and VisIt

Libsim is a VisIt library that simulations use to enable couplings between
simulations and VisIt. Not a special package. It is part of VisIt.

Simulation

Libsim
Front
End

Data
Access
Code

Libsim
Front End

Data
Access
CodeData

Source

Filter

Filter

In situ - interactive - Processing Workflow

1. The simulation code launches and starts execution

2. The simulation regularly checks for connection attempts from visualization tool

3. The visualization tool connects to the visualization

4. The simulation provides a description of its meshes and data types

5. Visualization operations are handled via Libsim and result in data requests to
the simulation

Instrumenting a Simulation

Additions to the source code are usually minimal, and follow three incremental
steps:

Initialize Libsim
and alter the
simulation’s
main iterative
loop to listen
for connections
from VisIt.

Create data
access
callback
functions so
simulation can
share data with
Libsim.

Add control
functions that
let VisIt steer
the simulation.

Connection to the
visualization library
is optional

Execution is step-
by-step or in
continuous mode

Live connection
can be closed and
re-opened at later
time

Exit

Initialize

Check for
convergence

Solve next
time-step

Instrumenting Application’s flow diagram (before and after

VisIt in-the-loop

 Libsim opens
a socket and writes out
connection parameters

VisItDetectInput checks for:
 Connection request
 VisIt commands
 Console input

Exit

Initialize

Check for
convergence

Solve next
time-step

Visualization
requests

complete VisIt
connection

process
commands

runs console
input

VisIt Detect
Input

In situ – batch - Processing Workflow

1. The simulation code launches and starts execution

2. The simulation explicitly loads the libsim runtime library

3. Visualization operations are handled via Libsim and will be processed at the end
of (each, or at regular intervals) compute iteration.

Details on the wiki.

http://www.visitusers.org/index.php?title=Libsim_Batch

• Generate image frames automatically
• Used when data is too large to dump to

disk.
• Stopping the execution at specific time

steps.
• Useful for debugging

• Global state variables
• Controlling Data Warehouse intermediate

variables – used for visual debugging.
• Controlling debug streams.

• Direct pointer link is shared with libsim.
• Strips Charts

• Allows for the monitoring of global values
over the life time of the simulation.

Parallel visualization as an iceberg

89

Les I/O parallèles

La gestion des pipelines de
visualization

Le format des données internes

La gestion des resources mémoire
(CPU et GPU)

Le couplage in-situ des codes de
simulation

End

Thank you for your attention.

	Visualisation scientifique parallèle de gros volumes de données
	Presentation of CSCS
	CSCS, home of “Piz Daint”, the Swiss flagship for national HPC Service
	Outline of the presentation
	Footnote
	Parallel visualization is managed in two ways
	SMP parallelism
	SPH Particle clouds to slices
	SPH data interpolation
	VTK’s SMPTools
	A side-note on visualization pipelines
	The Visualization Pipeline
	Visualization Pipeline: Definitions
	Visualization Pipeline: Data Parallelism
	Understanding, and fine-tuning the I/O
	The parallel I/O before the visualization
	Does your file format enable load-on-demand?
	Does your file format enable load-on-demand?
	MPI tasks, ghost-cells, hyperslabs
	MPI tasks, ghost-cells, hyperslabs
	Example with a plasma simulation output
	Example reading a BOV file in VisIt
	Distributed data and Streaming
	Question for the audience
	Slide Number 25
	XML output example with ghost cells
	Example for a Rectilinear Grid
	Running on 8 pvservers
	Optimizing the reading order (X, Y or Z)
	Zooming into the interesting zone
	Adjusting the Data Extents…
	Slide Number 32
	Reading particle data
	Eschew simplicity
	Example 2: a finite element code stores its results in Xdmf/HDF5
	Unfortunately, the Connectivity required by VTK is different
	reader must convert and re-shuffle
	Parallel data filtering
	Visualization of a large hemisphere of points (3.8 Billion particles)
	Visualization of a large hemisphere of points
	Visualization of a large hemisphere of points
	Can I use the VTK-numpy interface in parallel?
	Moving down the visualization pipeline
	Very large geometry creation and rendering
	Slide Number 45
	The visualization pipeline is created interactively, adding more modules
	The artifacts due to discontinuities are resolved thanks to ghost cells
	There remains visual boundaries due to illumination artifacts
	After 2 re-execution of the visualization pipelines….
	Need a rendering library to do shadows and ambient light occlusion
	Volume rendering strategies
	Understand the visualization technique and its implementation
	Volume rendering is a technique which requires a very light hand…��
	DNS of a sheared thermal convection
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Substitute XDMF with h5py
	Details about the rendering
	Volume rendering was tested with three parallel libraries
	Volume rendering was tested with three parallel libraries
	Volume rendering of Unstructured grid
	Volume rendering Unstructured grids with NVIDIA’s IndeX
	Real time screen capture
	Curious to try?
	Where is IndeX leading us?
	Where is IndeX leading us?
	Slide Number 68
	When there is too much data…
	in-situ visualization
	Loosely Coupled in-situ Processing (old definition)
	Tightly Coupled Custom in-situ Processing (old definition)
	Tightly Coupled General in-situ Processing (old definition)
	The In Situ Terminology Project�project lEADER: Hank Childs�
	Project Participants (to date)
	Slide Number 76
	In-situ references
	Using the in-situ terminology defined earlier
	Coupling of Simulations and VisIt
	In situ - interactive - Processing Workflow
	Instrumenting a Simulation
	Instrumenting Application’s flow diagram (before and after
	VisIt in-the-loop
	In situ – batch - Processing Workflow
	The Uintah – VisIt coupled workflow
	Uintah
	VisIt – libsim
	VisIt – Custom UI
	Parallel visualization as an iceberg
	End���Thank you for your attention.

