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1. Introduction (1)
(p. 3)

In many cases, the design of an appropriate iterative
linear solver is much easier if one has at hand a library
able to efficiently solve linear (sub)systems

Au = b

where A corresponds to the discretization of

−div(D grad(u)) + v grad(u) + c u = f (+B.C.)

(or closely related).

Thus we need a good solver for

discrete Poisson-like problems
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linear solver is much easier if one has at hand a library
able to efficiently solve linear (sub)systems

Au = b

where A corresponds to the discretization of

−div(D grad(u)) + v grad(u) + c u = f (+B.C.)

(or closely related).

Thus we need a good solver for

discrete Poisson-like problems

Efficiently:
robustly (stable performances)

in linear time: elapsed
n×#proc

roughly constant
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Discrete Poisson-like problems

� For not too large 2D problems, direct methods OK
(solve the system in linear time)
→ de facto standard for a long time

� Large 3D problems: untractable for direct methods
(In addition, scale poorly in parallel)
→ Iterative solvers needed

� Multigrid method are good candidates (see below)
But to substitute a direct solver we need

� a black box solver
(You provide the matrix & rhs, I return the solution)

� that is robust
(convergence not affected by changes in the BC,
PDE coeff., geometry & discretization grid)



2. Why multigrid (1)
(p. 5)

Standard iterative methods typically very slow

Consider the error from different scales:
small scale → strong local variations
large scale → smooth variations

Iterative methods mainly act locally, i.e. damp error modes
seen from small scale, but not much smooth modes

More steps needed to propagate information about
smooth modes as the grid is refined

(linear time out of reach)
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(p. 5)

Standard iterative methods typically very slow

Consider the error from different scales:
small scale → strong local variations
large scale → smooth variations

Iterative methods mainly act locally, i.e. damp error modes
seen from small scale, but not much smooth modes

More steps needed to propagate information about
smooth modes as the grid is refined

(linear time out of reach)

Multigrid: solving the problem on a coarser grid
(less unknowns → easier) yields an approximate solution
which is essentially correct from the large scale viewpoint



2. Why multigrid (2)
(p. 6)

A multigrid method alternates:

� smoothing iterations: improve current solution
uk using a basic iterative method → ũk

� coarse grid correction:

� project the residual equation
A(u− ũk) = b− A ũk ≡ r

on the coarse grid: rc = R r (R : nc × n)

� solve the coarse problem: vc = A−1
c rc

� prolongate (interpolate) coarse correction on the
fine grid: uk+1 = ũk + P vc (P : n× nc)



2. Why multigrid (3)
(p. 7)

Example

−∆u = 20 e−10 ((x−0.5)2+(y−0.5)2) in Ω = (0, 1)× (0, 1)

u = 0 on ∂Ω

Uniform grid with mesh size h , five-point finite difference.
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2. Why multigrid (4)
(p. 8)

Simple iterative methods are not efficient

Example: symmetric
Gauss–Seidel iterations
(1 forward Gauss–Seidel
sweep + 1 backward
Gauss–Seidel sweep)

‖r‖
‖b‖ – vs – number of iter.
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2. Why multigrid (5)
(p. 9)

Initial residual (r.h.s.) Residual after solve on the coarse grid
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2. Why multigrid (5)
(p. 9)

Initial residual (r.h.s.) Residual after solve on the coarse grid
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2. Why multigrid (6)
(p. 10)

Initial residual 1 × (SGS – coarse solve – SGS)
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� Geometric Multigrid is not black box
Often also not robust (e.g., influenced by BC)

� Classical Algebraic Multigrid (AMG)

� Attempt to imitate geometric MG in black box mode

� With robustness enhancements

� Issues still open after 30 years of research

� New issues came with massive parallelism

� Aggregation-based AMG

� Overlooked for a long time, revival since 2007

� Solves issues of classical AMG in a natural way

� Faster and more robust (controversial)



3. AMG & Aggregation (2)
(p. 12)

Aggregation-based AMG
Coarse unknowns: obtained by mere aggregation

Coarse grid matrix: obtained by a simple summation

(Ac)ij =
∑

k∈Gi

∑

ℓ∈Gj

akℓ

G
1

G
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G
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Aggregation-based AMG
Coarse unknowns: obtained by mere aggregation

Coarse grid matrix: obtained by a simple summation

(Ac)ij =
∑

k∈Gi

∑

ℓ∈Gj

akℓ

G
1

G
2

G
3

G
4

→
In parallel: Aggregates formed with unknowns assigned

to a same process → natural parallelization



3. AMG & Aggregation (3)
(p. 13)

How to solve the coarse problem?
By recursivity:

� apply the same two-grid scheme at the coarse level

� do only a few iteration (cost)

� → go to a further coarse level: recursivity again

� → and so on, until problem size is small enough
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3. AMG & Aggregation (3)
(p. 13)

How to solve the coarse problem?
By recursivity:

� apply the same two-grid scheme at the coarse level

� do only a few iteration (cost)

� → go to a further coarse level: recursivity again

� → and so on, until problem size is small enough

Geometric MG & Classical AMG:
use the V-cycle – 1 iteration at each level

Aggregation-based AMG:
use the K-cycle – 2 iterations at each level
with Krylov (CG) acceleration

Downside of the simplicity, but not an issue



3. AMG & Aggregation (4)
(p. 14)

Example: recursive Quality Aware Aggregation
for the discrete Poisson linear finite element
matrix associated with the mesh:

Zoom:



3. AMG & Aggregation (5)
(p. 15)

Aggregation Zoom
at Level 1 level 1

Level 2 Level 3



3. AMG & Aggregation (6)
(p. 16)

Aggregation works also for higher order FE matrices
Example:

3rd order (P3)
nnz(A) ≈ 16n

Fine grid Level 1

Level 2 Level 3



3. AMG & Aggregation (7)
(p. 17)

Solve phase: Workflow for 1 iteration using the K-cycle
(4 levels)

Level 1 (linear system to solve)

Level 2

Level 3

Level 4 (BLS : bottom level solver)
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4. AGMG
(p. 18)

Iterative solution with
AGgregation-based algebraic MultiGrid

Linear system solver software package

� Black box

� FORTRAN 90 (easy interface with C & C++)

� Matlab interface
>> x=agmg(A,y);

>> x=agmg(A,y,1); % SPD case

� Free academic license



4. AGMG: Test suite (1)
(p. 19)

MODEL2D : 5-point & 9 point discretizations of
{

−∆u = 1 on Ω = [0, 1] × [0, 1]

u = 0 on ∂Ω

with ∆ = ∂2

∂x2 +
∂2

∂y2

ANI2D : 5-point discretization of




−∇ ·D∇u = 1 on Ω = [0, 1]× [0, 1]

u = 0 for x = 1 , 0 ≤ y ≤ 1
∂u
∂n

= 0 elsewhere on ∂Ω

with ∇ = 1x
∂
∂x
+1y

∂
∂y

, D = diag( ε , 1 )

Tested: ε = 10−2 , 10−4
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✻
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4. AGMG: Test suite (2)
(p. 20)

Non M-matrices

ANI2DBIFE :
bilinear FE element discretization of



−∇ ·D∇u = 1 on Ω = [0, 1]× [0, 1]

u = 0 for x = 1 , 0 ≤ y ≤ 1
∂u
∂n

= 0 elsewhere on ∂Ω

with ∇ = 1x
∂
∂x
+1y

∂
∂y

, D = diag( ε , 1 )

Tested: ε = 10−2 , 10−2 , 10−3
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(i.e. some strong positive offdiagonal elements)



4. AGMG: Test suite (3)
(p. 21)

MODEL3D : 7-point discretization of{
−∆u = 1 on Ω = [0, 1] × [0, 1]×[0, 1]

u = 0 on ∂Ω

with ∆ = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2

ANI3D : 7-point discretization of




−∇ ·D∇u = 1 on Ω = [0, 1]× [0, 1]×[0, 1]

u = 0 for x = 1 , 0 ≤ y, z ≤ 1
∂u
∂n

= 0 elsewhere on ∂Ω

with ∇ = 1x
∂
∂x

+ 1y
∂
∂y

+ 1z
∂
∂z

, D = diag( εx , εy , 1 )

Tested: (0.07, 1, 1) ,(0.07, 0.25, 1) , (0.07, 0.07, 1) , (0.005, 1, 1) ,

(0.005, 0.07, 1) , (0.005, 0.005, 1)



4. AGMG: Test suite (4)
(p. 22)

Problems with Jumps (FD)
JUMP2D : 5-point discretization of



−∇ ·D∇u = f on Ω = [0, 1]× [0, 1]

u = 0 for x = 1 , 0 ≤ y ≤ 1
∂u
∂n

= 0 elsewhere on ∂Ω

with ∇ = 1x
∂
∂x
+1y

∂
∂y

, D = diag(Dx , Dy )

1,100100,1

100,100 1,1

Dx, Dy

JUMP3D : 7-point discretization of



−∇ ·D∇u = f on Ω = [0, 1]× [0, 1]× [0, 1]

u = 0 for x = 1 , 0 ≤ y, z ≤ 1

∂u
∂n

= 0 elsewhere on ∂Ω

with ∇ = 1x
∂
∂x

+ 1y
∂
∂y

+ 1z
∂
∂z

D = 103

D = 1



4. AGMG: Test suite (5)
(p. 23)

Sphere in a cube, Unstructured 3D meshes

Finite element discretization of



−∇ ·D∇u = 0 on Ω = [0, 1]× [0, 1]× [0, 1]

u = 0 for x = 0, 1 , 0 ≤ y, z ≤ 1

u = 1 elsewhere on ∂Ω

with ∇ = 1x
∂
∂x

+ 1y
∂
∂y

+ 1z
∂
∂z

D = d

D = 1

d = 10−3 , 1 , 103

SPHUNF :
quasi uniform mesh

SPHRF : mesh 10×finer on
the sphere



4. AGMG: Test suite (6)
(p. 24)

Reentering corner, local refinement
Finite element discretization of{

−∆u = 0 on Ω = [0, 1]× [0, 1]

u = r
2

3 sin(2θ3 ) on ∂Ω

with ∆ = ∂2

∂x2 +
∂2

∂y2

LUNFST :
uniform structured grid

LRFUST : unstructured grid
with mesh 10 r × finer near
reentering corner
r = 0→5



4. AGMG: Test suite (7)
(p. 25)

Challenging convection-diffusion problems
Upwind FD approximation of{

−ν∆u + v · grad(u) = f in Ω

u = g on ∂Ω

In all cases: tests for ν = 1 , 10−2 , 10−4 , 10−6

ν ≪ 1 → highly nonsymmetric matrices

Example of flow
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4. AGMG: Robustness study (1)
(p. 26)

� Iterations stopped when
‖rk‖
‖r0‖

< 10−6

� Times reported are total elapsed times in seconds
(including set up) per 106 unknowns

� � FD on regular grids; 3 sizes:

2D: h−1 = 600 , 1600 , 5000
3D: h−1 = 80 , 160 , 320

� FE on (un)structured meshes
(with different levels of local refinement);
2 sizes per problem: n = 0.15e6 → n = 7.1e6



4. AGMG: Robustness study (2)
(p. 27)

2D symmetric problems
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4. AGMG: Robustness study (3)
(p. 28)

3D symmetric problems
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4. AGMG: Robustness study (4)
(p. 29)

2D nonsymmetric problems
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4. AGMG: Robustness study (5)
(p. 30)

3D nonsymmetric problems
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4. AGMG: comparative study (1)
(p. 31)

Comparison with some other software
� AMG(Hyp): a classical AMG method as implemented

in the Hypre library (Boomer AMG)

� AMG(HSL): a classical AMG method as implemented
in the HSL library

� ILUPACK: efficient threshold-based ILU preconditioner

� Matlab \: Matlab sparse direct solver (UMFPACK)

All methods but the last with Krylov subspace acceleration

(Iterations stopped when
‖rk‖
‖r0‖

< 10−6)

Quantity reported:
Total elapsed times in seconds (including set up) per

106 unknowns as a function of the number of unknowns
(more unknowns yielded by grid refinement)



4. AGMG: comparative study (2)
(p. 32)

POISSON 2D, FD LAPLACE 2D, FE(P3)
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33% of nonzero offdiag > 0



4. AGMG: comparative study (3)
(p. 33)

Poisson 2D, L-shaped, FE Convection-Diffusion 2D, FD

Unstructured, Local refin. ν = 10−6
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4. AGMG: comparative study (4)
(p. 34)

POISSON 3D, FD LAPLACE 3D, FE(P3)
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4. AGMG: comparative study (5)
(p. 35)

Poisson 3D, FE Convection-Diffusion 3D, FD

Unstructured, Local refin. ν = 10−6
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5. Parallelization of AGMG (1)
(p. 36)

Perspectives

� Good to start from the best sequential method

Any scalability curve should be put in perspective:
how much do we loose with respect the best
state-of-the-art method on 1 core?



5. Parallelization of AGMG (1)
(p. 36)

Perspectives

� Good to start from the best sequential method

Any scalability curve should be put in perspective:
how much do we loose with respect the best
state-of-the-art method on 1 core?

� The faster the method,
the more challenging its parallelization

Less computation means less opportunity to overlap
communications with computation



5. Parallelization of AGMG (2)
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General parallelization strategy

� Partitioning of the unknowns
→ partitioning of matrix rows
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5. Parallelization of AGMG (2)
(p. 37)

General parallelization strategy

� Partitioning of the unknowns
→ partitioning of matrix rows

� Aggregation algorithm
Unchanged, except that aggregates are only formed
with unknowns in a same partition.
→ inherently parallel

� Solve phase
The parallelization raises no particular difficulties,
except regarding the bottom level solver

In sequential: sparse direct solver

Parallel direct solver → bottleneck for many proc.
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5. Parallelization of AGMG (2)
(p. 38)

Algorithm redesign

� Only four levels, whatever problem size

� Then the bottom level system has about 500 times
less unknowns than the initial fine grid system
→ still very large

� Thus: Iterative bottom level solver

� 500 times less
→ Need not be as fast per unknown as AGMG

� But has to scale very well in parallel
(despite smaller problem size)



5. Parallelization of AGMG (3)
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Iterative bottom level solver

� Aggregation-based two-grid method
(one further level: very coarse grid)

� All unknowns on a same process form 1 aggregate
(very coarse grid: size = number of processes (cores))

� Better smoother:
apply sequential AGMG to the local part of the matrix

� Very coarse grid system

� if still too large, solved in parallel
within subgroups of processes

� the solver is AGMG again
(either sequential or parallel)
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R3 P3

S
(1)
3 S

(2)
3

BLS · · ·

· · ·

Rb Pb Rb Pb

Sb Sb

Bb Bb

Sb : sequential AGMG applied to “local” part of the matrix

Bb : sequential AGMG (512 cores or less) or
parallel AGMG in subgroups (more than 512 cores)



5. Parallelization of AGMG (5)
(p. 41)

Results: the magic works
Weak scalability on CURIE (Intel Farm) for 3D Poisson

Elapsed time (seconds) – vs – number of unknowns

Finite Difference P3 Finite Elements
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3D Poisson (Finite Difference) on HERMIT (Cray XE6)

Weak scalability Strong scalability

Time – vs – # unknowns Time – vs – number of cores
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Weak scalability on JUQUEEN (IBM BG/Q) for
3D Poisson (Finite Difference)

Elapsed time – vs – number of unknowns
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� Robust method for discrete Poisson-like problems

� Can be used (and is used!) black box
(does not require tuning or adaptation)

� Faster than other state-of-the-art solvers

� Fairly small setup time: especially well suited when
only a modest accuracy is needed

� Efficient parallelization:
Linear system with > 1012 unknowns

solved in less than 2 minutes
using 373,248 cores on IBM BG/Q;
that is: in about 0.1 nanoseconds per unknown

� Professional code available, free academic license
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•Analysis of aggregation–based multigrid (with A. C. Muresan), SISC (2008)

•Algebraic analysis of aggregation-based multigrid, (with A. Napov) NLAA (2011)

AGMG and quality aware aggregation
•An aggregation-based algebraic multigrid method, ETNA (2010).

•An algebraic multigrid method with guaranteed convergence rate (with A. Napov),
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•Aggregation-based algebraic multigrid for convection-diffusion equations,
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•A massively parallel solver for discrete Poisson-like problems, Tech. Rep. (2014)
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