
hybrid-co, Autrans, 8th oct 2012

Hybrid Computing, Past, Present and Future

Eric Petit – University of Versailles

Optimize HPC Applications on Heterogeneous Architectures

Eric.petit@uvsq.fr

2.

Who are we?

• LRC-ITACA
Université de Versailles St-Quentin-en-Yvelines UVSQ
French Alternative Energies and Atomic Energy Commission CEA DAM

• Dedicated to HPC
– Application, compiler and memory hierarchy optimisation, Performance

analysis tools
– Involved in several projects: H4H, ViHPS, Teratec, Exascale
– We have open positions in the lab

• A master degree specialized in HPC : MIHPS
– http://mihps.prism.uvsq.fr/

3.

Who are we?

Exascale Computing Research:

Joint lab between Intel, UVSQ, CEA DAM, and GENCI

CTO: Professor William Jalby
Mail: jalby@uvsq.fr

Thematics: runtime, application characterisation,
performance analysis, exascale application co-design

4.

What is this presentation about?

• Past
– Computer science short history

– Historical fact about HPC

• Present
– Some basics about processor architecture
– What makes a GPU so different?

• What next?

– Current trend and upcoming architectures
• Xeon Phi, Maxwell and beyond...

– Impact for application developers?

5.

History

• Once upon a time...
– Mechanical computer: personal computer until ~60-70

– Analogic: electronic, mechanic and/or optic computers.
A measurable physic output following the same equation as the
target computation (~ASIC of these days)
 => embedded (bomb dropping...), simulation

– Bits-based computer => HPC

• Electro mechanic in the 40's
e.g. Z3 (first IBM market!)

• Lamp based:
– 1945 the famous ENIAC designed by von Neuman and

considered as the first modern computer
– Memory was already a huge issue (mercury tunnel, ferrite...)
– 1955 IBM 704 and FORTRAN designed by Gene Amdhal

5 kFLOPS => ** Physicists are stuck here ;) **

– 1956: transistors

6.

History

=> Computer science is born before current
microprocessor technology

– von Neuman 40's “The” model (with Turing in 50's)

– Amdhal 50's “The” law

– Cray 60's the father of modern HPC
• “Anyone can build a fast CPU. The trick is to build a fast

system”
– Bandwidth oriented design
– Cray-1 Vector processor

– And many others....

7.

HPC History

• Meanwhile in HPC...
– HPC is the formula one of computer design

• Testing extreme solution
• (almost) No trade off
• (used to be) First place to experiment architecture

improvements
• Some technologies will never go to mass market (?)

– HPC solution are not only a matter of processing units
• Network
• Infrastructure

– Cooling
– Power
– Set-up and recycling

• Politics and finance

8.

• HPC top 500:

Source: Top500 report June 2012

HPC History

9.

#1 top500 Pmax(flop)/Power

#1 top500 Power

HPC History

10.

•Where do we come from?

IBM Bluegene L

IBM Bluegene Q

IBM Cell

Fujitsu Sparc64

BlueGene

BlueGene

~GPU/MIC

~Intel SB

~Intel NH

AMD

BlueGene Q

TF/MW
Power

Year Power TFLOPS TFLOP/
MW

Cray-1 1976 0,115 0,8 6,95

ASCI Red 1996 0,85 1,06 1,24

ASCI White 2001 3 12,3 4,1

EarthSimulator 2002 3,2 122,4 38,25

Bluegene/L 2005 1,4 280 200

RoadRunner 2008 2,35 1040 442,55

Jaguar 2009 6,96 1760 252,87

K 2011 9,8 8700 887,75

K 2012 12,6 10500 833,33

Sequoia 2012 7,9 16320 2065,82

11.

The power wall

• Why power is such an issue:
– Sequoia power consumption assuming 10%-off a year

 => 63 GW/h
– Dongarra approximation for the first year is 8 M$/Y

– Average public price in US ~15cts/kw => 9,45 M$/Y

– If we keep the same (very approximate!) trend for exascale

=> 24 MW, 28 M$/Y if the electricity price remain the same...

• ~ 60 wind-power generator, not so much if you have wind...
• 120 hectares of average solar panels in France
• 1,8% of an average french nuclear power plant

12.

• Why power is such an issue:
– Sequoia power consumption assuming 10%-off a year

 => 63 GW/h
– Dongarra approximation for the first year is 8 M$/Y

– Average public price in US ~15cts/kw => 9,45 M$/Y

– If we keep the same (very approximate!) trend for exascale

=> 24 MW, 28 M$/Y if the electricity price remain the same...

• ~ 60 wind-power generator, not so much if you have wind...
• 120 hectares of average solar panels in France
• 1,8% of an average french nuclear power plant

=> HPC will probably not go green...

The power wall

13.

• Why power is such an issue:
– Power density

• More than a rocket nozzle

• Impossibility to power up the full-chip ! => “black silicon”

• 3D-stacking impact?

=> Huge challenge for founders

– Single core performance
• Forget about higher frequency

– O(F*V^2), and V nearly stop decreasing
– Higher frequency needs higher voltage
– Thinner transistors “should” require lower voltage

• Keeping the same frequency already eats all the effort

=> There is no other way than going parallel... (for now)

The power wall

14.

Current Challenges

• Main challenges for Exascale

– Power

– Parallelism
• Algorithms
• Numerical precision !

– Reliability/Resiliency
• Fault tolerant HW
• Fault tolerant Software

– Programmability
– But also OS, runtime, file system etc...

15.

Some theoretical background

• System design is based on very few basic rules
including:
– Moore's law

– Amdhal's law

– Gustafson's law
– Little's law

16.

•“The number of transistor in a microprocessor / surface unit double every two years”
- Gordon Moore, Intel founder

•Law → laws: people are citing extrapolated conclusion: memory size, performance...
•The original law is still valid with multicore

•Moore's law should stop with transistor shrinking limit => yes and no...
•Uniprocessor performance double every 18 month => dead

•Transistor size wall
•Power density wall

Moore's law

Itanium 2

Intel multicore

GPU??

7.I Billion

Source: wikipedia

17.

Moore's law

•Nvidia GPU:
•Kepler 7.1 billion (2012/3)
•Fermi GF100 3 billion (2010)
•Geforce 9 G92 1.4 (2008)
•Geforce 8 : G80 0.745 (2007)

•The trend is getting closer to Moore's law

•Kepler GPU die size 550 mm2 => 12.1 Mt/mm2
•Sandybridge E CPU die size 435mm2, 2.27 Bt=> 5 Mt/mm2
•Despite higher transistor size, the density is ~2.5 fold better than CPU.

• Why and how?
•Lower frequency => thinner wiring
•Much less memory => less wire / network (crossbar)
•Simpler design => easier to organise
•Power is naturally (i.e. needed from the user to get performance...)
spread on all the GPU => no (less) hotspot

•Moving to many core helps keeping close to Moore's Law
•+ a little help for power

•Same in intel's GPU design

18.

Moores law

•DAC 2012 Keynote: Designing a 22 nm Intel® Architecture Multi-CPU and GPU
Brad Heaney

19.

Amdhal's law

• Limited speed-up: sequential wall

• Diminishing Return On Investment (ROI)

Ta=Ti∗s+
(1−s)∗Ti

P

Source: Wikipedia

SU= 1

s+1−s
P

Seq //

Ti
s*Ti

Seq //

Ta

(1-s)*Ti

20.

Amdhal's law

•How many cores in a chip? Why not putting 16, 32 in current
CPU?

•CPU are primarily designed for desktop rather than HPC:
 => the right amount today is 4, trust Intel's guys ;)

•Not so much parallelism in currents desktop app
•Shared memory bandwidth => sequentialization of
memory accesses
•Need to scale other resources accordingly (memory)...
•or, like GPU, constraints the code that fit (FLOP/Byte for
bandwidth, limited working set)

•Double vector size for compute-intensive parts
•MIC, aka Xeon Phi is for HPC => 50+ cores

21.

Amdhal's law

• Amdhal and power
– If the code is parallel enough, using one more processor is more

power efficient than using higher frequency

– Until 4 cores, if 60% of the code is //, increasing the number of
cores is better ((2,0.5),(3,0.45),(4,0.42)...)

Seq 2 3 4 5 6

0,1 1,81 2,5 3,07 3,57 4

0,25 1,6 2 2,28 2,5 2,66

0,5 1,33 1,5 1,6 1,66 1,71

0,75 1,14 1,2 1,23 1,25 1,26

Power at higher
frequency for eq SU:

•P=F*(SV+DV)2
•1/3 leakage SV=1/3*V
•Dynamic voltage

•DV=2/3*V
•D = O(f)

•VP=S(1/3+2/3*S)^2

Power hf 2 Power hf 3 Power hf 4 Power hf 5 Power hf 6

4,34 10 17,49 26,31 36

3,136 5,55 7,88 10 11,88

1,99 2,66 3,13 3,47 3,73

1,37 1,54 1,63 1,70 1,74

22.

Amdhal's law

• Amdhal and power
– What if the code is not parallel enough:

• Shut off unused core and use others => power saving

– What if the code is not always parallel:
• Use more cores when it is parallel
• Run high frequency sequential core on the rest

=> run HYBRID

• See also: Extending Amdahl’s Law for Energy-Efficient Computing in
the Many-Core Era, Dong Hyuk Woo and, Hsien-Hsin S. Lee

23.

Gustafson's law

SU=P−seq∗(P−1)

•Assumption: the size of work to do // varies linearly with the number of processors
•Idea: solve larger problem within the same amount of time
•Optimistic point of view but what about a problem which doesn't fit the assumption?

•Algorithm wall

•Gustafson => weak scaling
•Amdhal => strong scaling

24.

Little's law

•Concurrency=latency*bandwidth
•New interpretation with massively parallel architecture
•How many compute unit do I have to run in // to hide latency?
•Co-design

e.g. Vasily Volkov work on GPU:
•On G80, latency of SIMD float instruction: 24 cycles
• Throughput 1 every four cycles: ¼
•6 SIMD instruction to schedule per SM per cycle
•1 SM = 8 cores so 6 warp will do it
 32 threads per warp => 192 threads / SM

For more details check:
http://www.eecs.berkeley.edu/~volkov/volkov10-PMAA.pdf
Or other related work

http://www.eecs.berkeley.edu/~volkov/volkov10-PMAA.pdf

25.

• So where are we?
– Current low level design
– Current node design

– Current system design

26.

Computer Architecture in General

• System design consist on optimizing the whole system

– Bottom up evolution: current trend, architecture was forced to move

– Top down evolution: used to be, but now less frequent e.g. co-design,

ASIC, FPGA, MIC~

27.

Low level basics

• Common concept to CPU/GPU/MIC

– ALU/FPU/register

– Memory Hierarchy

– Pipeline
– In order / out of order
– SIMD, SIMT

– SMT

28.

Low level basics

• Very basic architecture design:
– ALU/FPU/register/memory

~von Neumann

29.

Memory design

• Main Memory has a high latency => Memory hierarchy

30.

Memory design

• Hard Drives are slow => use fast RAM memory

• But RAM is much slower than core L2 cache

– Concurrent accesses between 2 cores?

31.

Memory design

• Add L3 cache shared between cores on die
– Faster core to core communication (≠ AMD)

– Lower latency

32.

Memory design

• Monolithic shared caches don't scale...

•NUCA cache !
•Faster (latency)
•Higher bandwidth
•Simpler and scalable design

33.

Cache design

• How does a cache memory work?

@1

@2

CPU

@3

Cache

Main Memory

34.

Cache design

• How does a cache memory work?

@1

@2

CPU
Cache

@3

@1

Loop:
 F(@1)

Main Memory

35.

Cache

@2

Cache design

• How does a cache memory work? => locality
» If the cache is full you replace an existing line => capacity

miss
» Replacement policy

CPU

@3

@1

Loop i:
 F(@1)
Loop i:
 G(@i)

Temporal

Spatial

Temporal

@1

@2

@3

Main Memory

36.

Cache design

• Lower @ bits index + Offset
» Direct mapped cache

CPU

Loop i:
 F(@1)
 G(@2)

@1=01 0011 0

01 0011 1

@2=11 0011xx

Tag Value

01 @1()

Main Memory

Tag Index Offset

Index

@1 01 0011 0

37.

Cache design

• What if the two address share the same lower bits?
» Same index byte = same line

CPU

Loop i:
 F(@1)
 G(@2)

Tag Value

11 @1()///////// @2()

@1=01 0011xx

@2=11 0011xx

Main Memory

Index

38.

Cache design

• Aliasing, associativity miss
» Similar to 4k-aliasing (WAR in WB buffer)

CPU

Loop i:
 F(@1)
 G(@2)

Tag Value

01 @1()///////// @2()///////// @1() ...

@1=01 0011xx

@2=11 0011xx

Main Memory

Index

39.

Memory design

• Aliasing => need associativity
» N-way associative cache

Typically 8-way L1, 4-way L2, direct map L3

Way 00 Way 01 Way 11 Tag 10

tag Value tag Value tag Value tag Value

01 @
1

11 @
2

@1=01 0011xx

@2=11 0011xx

Different replacement policies such as Last Recently Use
(LRU) or Round Robin

Index

Main Memory

40.

Memory design

• Shared memory vs private cache => True and false
sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2

Index

Index

41.

Memory design

• Shared memory vs private cache => True and false
sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2

Invalid

Index

Index

42.

Memory design

• Shared cache => True and false sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2:...
 Read @1

Invalid

Index

Index

43.

Memory design

• Shared cache => True and false sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2:...

 Read @1 => true sharing

Comm

Index

Index

44.

Memory design

• Shared memory vs private cache => True and false
sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2:...

Invalid

Index

Index

45.

Memory design

• Shared memory vs private cache => True and false
sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2:...

 Read @1'

Invalid

Index

Index

46.

Memory design

• Shared memory vs private cache => True and false
sharing

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

Way 00 Way 01

tag Value tag Value

01 @
1

@
1'

11 @
2

P1: write @1 P2:...

 Read @1' => false sharing

Comm

Index

Index

47.

Memory design

• Also some physical issues
» Read/write ports
» Banking (not only for caches)

Way 00 Way 01 Way 11 Tag 10

tag Value tag Value tag Value

01 @1 11 @2 10 @3

01 @4

Bank 1

Bank 0

2 read port / bank
1 write port / bank

If we access @1,2,3
At the same time
=> Bank conflict
=> also on GPU

Most of the time
consecutive line in
distinct bank (locality)

F(@1)|G(@2)|H(@3)=> 3 cycles
F(@1)|J(@4) => 1 cycle

R1

R2

Index

Read: @ modulo=>bank
 Read index
 Tags compare
 If hit return value
 Else miss&&ask higher Memory

48.

Memory design - CPU

• Memory is IMPLICIT on CPU

– Data hierarchy fetches the data from memory for you
• (almost) No control on the cache content
• Memory mapping need tricks (e.g. first touch policy)

– HW mechanism to accelerate the process
• Adjacent pages
• Adjacent cache line
• Prefetcher
• Victim cache
• Multi-way concept
• ….

– Interact with software => how to optimize?

49.

Memory design – Efficient usage

• Be aware of the memory hierarchy

– Temporal locality (Blocking, tilling...)

– Spatial locality (Data structure...)

– Vectorized load
– Software prefetch (Intrinsic, directive...)
– Avoid data sharing (tree reduction …)

– First touch policy (// initialization)

• Hide L/S latency by computation, do use too many array
(memory stream) at a time

– Unrolling (and jam)
– Loop fusion
– Loop splitting
– Software pipelining...

50.

Memory design - GPU

• Memory is EXPLICIT on GPU
– You explicitly pull the data down to the computing unit and push

it back to memory

• Throughput oriented data-flow model (2-3x /CPU)

– Caches are very recent on GPU and different from CPU: RO
cache, possibility to switch part of the L1 into shared memory

– Less logic more efficiency, rely on programmer/compiler

51.

Memory design

• Get the data close to you (temporal locality)

– Use registers (and don't waste them)
• Minimize occupancy to match the needed concurrency

(Little's law)

– Use shared (copy global to shared before computing)

• Use spatial locality
– Neighbour threads access neighbour data

• Irregular access application with no data locality?

– Be careful about banking (old GPU, new?)
– Don't share data between SMX

• COMPUTE INTENSITY
• Algorithmic changes

• Loop fusion/grouping (even with synchronization)

=>Many tutorials on this topic including NVIDIA ones

52.

More about registers:

• Few of them because of design and power consumption
issue
– CPU 144+160=304 per core

– GPU 344 (65536/192c) per core ? No you can access max 255
per core, why?

• Registers are attach to threads, not cores!
• Register are shared between concurrent thread
• Only 32 per thread if you use max concurrency
• More register if you use less thread
• Needed since the closest memory for spill-fill in GPU is

~40cycles far!

53.

More about registers:

• Problem: graph coloring is NP complete
– Spill-fill (saving to stack) can cost a lot

– Use heuristic algorithm
• And some are really bad...

• Register pressure is a variable to optimize
• Coloring at ~BB unit => be careful with optimization which

enlarge them (unrolling)
• On GPU register file is shared between threads => minimize

occupancy = maximize registers per thread

– e.g exotic (and funny) register design: rotating registers on
Itanium

54.

Die design

• We are now aware of how code and data get to the compute
unit, what happen next?

• Transistor count:

– 26 M per core on 10c Westmere CPU (32 nm)

– 28 M per core on 8c Sandy-bridge EP (28 nm)

– 2.4 M per core on 2880c Kepler GPU (28 nm)

• Total memory on chip (including register):

– 8c Sandy bridge EP ~24 Mo

– 2880c Kepler ~10 Mo

=> design are slightly different, usage should be!

55.

Die Design

A closer look:
• What makes different CPU core and GPU core (SM):

– CPU
• Capture a maximum ILP: MIMD, OoO, SIMD

• Optimize Latencies:

– Pipelined design at all level

– Memory prefetcher

– Branch predictor

– Loop buffer, victim cache...

– GPU
• Use “existing” massive parallelism (gridification)

– SM(X), WARP, Thread

– SIMT (+SIMD)

• Throughput oriented

– Use thread concurrency to mask latency

– Execute all path and predicate

– Explicit data management

• Rely on user code and compiler quality (:()

56.

Exploit parallelism - Flynn Taxonomy

• SIMD, Single Instruction Multiple Data
• MIMD, Multiple Instruction Multiple Data

• SISD, Single Instruction Single Data

• MISD, Multiple Instruction Single Data

57.

Exploit parallelism - Flynn Taxonomy

Scalar processor
von Neuman model

SuperScalar processor
VLIW

~Systolic array
Redundant system

Vector Instruction
~GPU

58.

Exploit parallelism - Flynn Taxonomy

• Some “refinements” are proposed from time to time like
SIMT, Single Instruction Multiple Thread => GPU

• Architecture can use many paradigms at different
granularities, ex SSE on superscalar or SIMD in SIMT

• Exploiting parallelism:

– ILP: Instruction Level Parallelism
– TLP: Task Level Parallelism

• Fine grain: e.g. thread
• Coarse grain: e.g. MPI process

59.

Exploit parallelism – Multi Level

60.

Exploit parallelism - ILP

• ALU and FPU and Memory operation can work in
parallel, how to do it?
– Introduce Pipeline to benefit from ILP

– Idea, compute an instruction can be split into steps

Add Logic for Pipelining hereHierarchy

61.

Exploit parallelism - ILP

• Fetch Instruction
• Decode the instruction

• Fetch the operand

• Execute

• Write back the result

Fetch Inst Decode Fetch Op Execute WB Fetch Inst Decode ...

Fetch Inst Decode Fetch Op Execute WB

Fetch Inst Decode Fetch Op Execute WB

Fetch Inst Decode Fetch Op Execute WB

Fetch Inst Decode Fetch Op Execute ...

T0 T1 T2 T3 T4 T5 T6

62.

Exploit parallelism - ILP

• Imagine a tube:
– Latency: time to go from entry to exit

– Throughput: output element per time step

• The more stages the thinner the time step, limit? (P4...)

– Reality is much more complex

Fetch Inst

Decode

Fetch Op

Execute

WB

1

1

1

1

1

2

2

2

2

2

3

3

3

3

T1 T2 T3 T4 T5 T6

3

T7

4

4

4

4

4

T8

63.

Exploit parallelism - OoO

• A short example explaining why this not as simple...

Fetch Inst

Decode

Fetch Op

Execute

Mem

1

1

1

1

1

2

2

2 2 2

3

3 3 3

T1 T2 T3 T4 T5 T6

3

T7

4 4 4

4

T8

Loop: R2 = LOAD R1+0 // 1

 R3 = R3 ADD R2 // 2

 R1 = R1 ADD 4 // 3

 R4 = R4 SUB 1 // 4

 BNZ R4,boucle // 5

Mem

WB

1

2

2

3

4

2

3

4

2

3

4

1 3

4

4

5

5

5

5

5

5

5

1 2

1

1

1

2

2

2

IPC 5/(5+2)=0.71

64.

Exploit parallelism - OoO

• Need to change execution order:
– Statically => SW

– Dynamically => JIT, HW

Fetch Inst

Decode

Fetch Op

Execute

Mem

1

1

1

1

1

2

2

2

2

2

3

3

3

3

T1 T2 T3 T4 T5 T6

3

T7

4

4

4

4

T8

Loop: R2 = LOAD R1+0 // 1

 R1 = R1 ADD 4 // 3

 R4 = R4 SUB 1 // 4

 R3 = R3 ADD R2 // 2

 BNZ R4,boucle // 5

Mem

WB

1 3

4

2

3

4

241

5

5

5

5

5

5

IPC 5/5=1

65.

Exploit parallelism - OoO

• In order execution => the compiler or the user tune the instruction
scheduling

• How to do it in HW => Out of Order execution

– Fetch and decode many instruction at a time

– Store it in buffer at the stage that fetch operand

– Dispatch those that are ready to execute

– Enhancement
• More physical register than logical register
• Use renaming to break false dependency (Tomasulo 1967...)

• More ILP in the pipeline (fixed design)

=> more execute units to dispatch

=> issues more than one execution / cycle

• Now you should understand “4-issue superscalar processor”

66.

Exploit parallelism - ILP

• Enhanced pipeline : Remove “bubbles”
– Branch prediction

– Out of order execution

– Hide Memory latency with concurrency (Little's law)

– Many path pipeline (Int, float etc...)

– Loop buffer ...

• Enhanced ILP:
– Longer pipeline

– More than one unit of each kind

– Out of order execution

– Compiler optimization like unroll or software pipelining

• Alternative way for ILP: Vector, SMT...

67.

Exploit parallelism - SIMD

• SIMD commonly implemented as vector operations:
– Adjacent memory location input

– Adjacent memory location output

– 4 classes: vector arithmetic and logic + scatter +
gather + shuffle

– AVX, SSE, MMX, Altivec...

A[1]
A[2]
A[3]
A[4]

B[1]
B[2]
B[3]
B[4]

+

A[1]+B[1]
A[2]+B[2]
A[3]+B[3]
A[4]+B[4]

A[1]
A[2]
A[3]
A[4]

A[2]
A[4]
A[1]
A[3]

A[1]

A[1]
A[1]
A[1]
A[1]

A[1]
A[2]
A[3]
A[4]

F(A[1],A[2],A[3],A[4)]

=

Vector AL

Shuffle

Scatter

Gather

68.

Exploit parallelism - SIMD

• Problem with vector operation:
– Computations have to be independent

• Inter-iteration dependancy ?

– Data structures are heavily constrained
• Adjacent
• Aligned (with ½ line of cache)

=> compiler are not so good at vectorizing
• Check the output ! (-opt-report in ICC)
• ICC has the best vectorization result
• Use compiler flags
• Use directive to improve your code (#pragma ivdep)
• Rewrite your code to ease vectorization: requires experience
• If there is no other way and you really need it, use intrinsics

69.

On CPU:
If it pay off reshape the data
 - Local shuffle operation
 - or at global level (but be careful
 RB struct can be very bad in other
 cses)
Similar to coloring for MPI
On GPU:
Don't even need to reshape

Exploit parallelism - SIMD

• Vectorization direction:
– Same array independent iteration

– Different arrays dependent iteration

for i
 a[i]=b[i]+c[i]

for i
 a[i]+=a[i-1]
 b[i]+=b[i-1]

a[1]

a[2]

b[1]

b[2]

c[1]

c[2]
= +

a[2]

b[2]

a[2]

b[2]

a[1]

b[1]
= +

A B

70.

Exploit parallelism

• Until now, we only deal with single core parallelism
– Still an active problem !

• What about exploiting parallelism at coarser grain

– Pushing farther single core => SMT

– Multicore => MT
– Manycore => ???

• On Nvidia MIMD WARP and SIMT threads

71.

Exploit parallelism - SMT

72.

Exploit parallelism - GPU

•Work is shared in blocks
•Multiple blocks are assigned to one SMX
•A block is divided into WARP of 32 threads

•Warp of different block can be
scheduled at the same time
=> MWMD
=>the pool of thread is shared between

blocks
•Threads of a same WARP are
executed in SIMT

•This is very complex, and you have to take
care of it

73.

Exploit parallelism - MT

• Node design: context for threads based parallelism

• What to do in extra threads:
– Share the work in tasks

• Symmetric

• Steps (pipeline like) => stream

• Asymmetric collaborative task

• Slave/helper task

• ! I use task as a generic term. Not the “task” as openMP one
– “Task”-based runtime such as openMP 3.0

• Worker thread

• Task queue

• Work stealing

• Task scheduling
– Many solutions implemented in runtimes

– Not the purpose of the lecture

– But consider following pointers: OpenMP, OmpSS, StarPU, MPC, HMPP...

74.

Exploit parallelism – Multi Level

But also MIMD+SIMD
on CPU

75.

Exploit parallelism – CPU SPMD

• At a software level, using openMP, TBB, Cilk...
– Expose symmetric task to execute simultaneously

e.g. parallel for, iteration are independent and can be done in
parallel

– Express synchronisation if needed

• At runtime level
– The runtime produce one thread with its own instruction stream,

stack...

– Work is shared between threads

– Threads are spread onto the HW (scatter, compact, fixed...)

• At system level:
– Scheduling (can interact with runtime)

– Memory allocation (first touch...)

76.

Exploit parallelism – CPU SPMD

• OpenMP parallel for:

– Implicit barrier at the end

– Load balancing?

77.

Exploit parallelism – GPU SIMT

• From SIMD to SIMT: not the same granularity
– Feed all threads with the same instruction

– Each thread take care of its own data

– Doesn't need to be adjacent

– Doesn't need to be aligned (Bank issue and coalescing almost
disappear)

– But need locality so that you can explicitly copy the data close to
your set of threads and they can easily share between them if
needed

• SPMD vs SIMT?
– SPMD is a software based model, HW is not aware of it

– SIMT, HW is executing one instruction stream in many thread

78.

Exploit parallelism - SIMT

• A SIMT specific issue: divergent path

Source: Sylvain Collange

79.

Node design example – Cray XE6 Data to check

NUMA=
Non Uniform Memory Access

Non uniform bandwidth
Non uniform latency

Distributed shared memory:
HW coherency protocol

80.

Node design example – Cray XK6 Data to check

Same as XE6 but with 2 NV
GPUs

The link to the GPU is the
weak point!

Will it get better?

Interesting example because
you can compare same node
technologie with and without
GPU

See also:
acss workshop 2012
ORNL Titan
HLRS Hermi

81.

Node design example – Distributed Memory

CPU and GPU does not share the same address space !
•User needs to explicitly copy/copy back the data
•Runtime can do it in software
•HW guys are thinking about it

82.

•Parallelism vs ...

• Other important topics

– Be fast is cool, be right is better:
• FPU and FP standardization
• Numerical validation of algorithm e.g.:

– Parallelisation of reduction
– Parallel evaluation of polynomial

– Fault tolerance
• HW, SW error
• HW, SW recovery mechanism

– Resource sharing
• Queueing effect
• Concurrent access: race condition
• Saturation

83.

In a not so far future

• Heterogeneous many-core
– Consensus: Big and fast core performing sequential part

and many small cores for // parts
• “Extending Amdahl’s Law for Energy-Efficient

Computing in the Many-Core Era” Woo and Lee
• Cell BE example
• André Seznec ERC grant proposal
• Intel public road map
• Nvidia + ARM? (rumor and project...)

– Shared Memory? Yes, NUCA, but for how long?
• Transactional memory?

– Freq? Lower but boost on sequential short period of time

– NUMA RAM? Still need intermediate level between
nfs/hdd, and on-die memory

– Out of core accelerators? GPU?

84.

Programming future many-core

• IBM Cell Broadband Engine architecture lesson:
– Hybrid design: 1 “large” superscalar PPE and 6 small vector processors

SPE => very high performance for a single chip

– A complex design

• Explicit DMA based transfer

• Complex vector instruction set

• Unpredictable 7 bidirectional ring network

• Too few memory per core

– Programming: a funny puzzle to solve

• But what about production development

• No good compiler
– Very innovative architecture as Itanium was...

– Supportive market:

• HPC, but very few

• PS3 game console, but for how long?

• No longterm output

=> Sony stop the production,

85.

Programming future many-core

• HPF “failure”
• K Kennedy “The rise and fall of High Performance Fortran: an

historical object lesson”

• Sakagami and Murai “The rise and fall of High Performance Fortran
in Japan - Lessons learned from HPF”

– Overselling:

• Don't need to rewrite

• If the compiler doesn't use the directive your code will run as
sequential version

• Compiler will generate “good” code

=> reality doesn't match the expectation

– Based on immature language

• Fortran90 was not ready, bad performance, bug

• No tool F77 → F90

• People have to rewrite their application if they want performance in
return

– Rely on compiler for performance

• No entry point for Hand-tuning

86.

Programming future many-core

• What about:
– CUDA?

– OpenCL?
– OpenHMPP?
– OpenACC?

• The (immediate) future:

– Jurassic Park: MPI/OpenMP

– Improved runtime
– Unified runtime such as MPC

• Challenging and very promising solution:
– Cilk, TBB, ompSS => task programming

• Cilk+MPI?

87.

Programming future many-core

The world outside HPC: commercial desktop software, games, embedded system

88.

Programming future many-core

• Key challenges:

=> Adaptability

=> Virtualisation

=> Resiliency?

89.

Programming future many-core

• More powerful runtime

– Todays new trend:
• StarPU: resource load balancing)
• HMPP: Distributed memory management, data

mirroring, resource abstraction)
• MPC: unified runtime unlock multi-level

optimisation e.g. HLS, microthread-MPI
• More powerful hardware

– Scheduler? e.g. improved block scheduler in NV
– Transactional memory support (Haswell?)

90.

Programming future many-core

• Future runtime:

=> Scheduling, balancing, placement are moving to
hardware

=> Dealing with distributed memory

91.

Programming today, thinking about future

• Do I need low level programming and/or intrinsic?
– NO

– … except if you are paid for it

– What should I do then?
• Wait compiler improvement and/or the next architecture
• Ask an expert
• Use libraries...

• Do I need to take care of the underlying architecture?
– Taking full advantage of a micro-architecture will become a

nightmare

– But application/algorithm will have to be architecture aware...

– Parallelism pattern that match the architecture topology has to
be exposed. For the rest relies on expert, compiler and libraries.

92.

Programming today, thinking about future

• A few words about libraries

– Why you should use library first:
• Sorry, you are not as good as these guys...
• Tested for you and it comes with specifications!
• Updated transparently
• Better than compiler output on a naïve code
• Prefer constructor library: e.g. mkl

– When do you NEED to do your own code:
• When you are doing something very very specific

– CORNER CASES
• If you are in a hurry and libraries are not mature
• When you are the library developer...

93.

Programming future many-core

• A few words about compilers:

– Compilers are always late...
• Compiler becomes good when the architecture is over
• Usually good enough during the CPU lifetime
• Sometimes not...: Itanium, Cell, first CUDA
• Very complex software that need to be tuned on the

architecture
• Parallelization have always been an issue: it is getting

worst...

– Compiler needs to be driven by the user
• Check the output quality! => MAQAO
• Use flags and directives!

– Compiler are not equal => try them all!

94.

Programming future many-core

Compilers trend:

– Retargetable

– Modular (like LLVM, not GCC)

– Profile guided

– machine learning, auto tuning

– JIT

=> Dynamic and retargetable
=> Compiler are moving into runtime and even architecture

95.

A few words about language

• FORTRAN is difficult for compilers
– It implies also poor semantic for compiler error and

warning...

• FORTRAN is difficult to maintain
• FORTRAN is not well standardized: different compiler,

different results (when it compiles)

• FORTRAN is objectively difficult to read

• FORTRAN is difficult to interface with other languages
– Types translation

– Always the last to benefit from the improvement (ask
HMPP guys, MPC guys or CUDA guys)

• FORTRAN is not the future!

 As you have maybe guessed, may advice is for
new software, choose another language

96.

A few words about language

• What should I choose:
– C++ it is faster to develop, better for software architecture,

but you need to be careful about performance

– C , it just works and perform well... But maintainability...

– C + C++ it rocks!

– Scripting language (Python, lua, …) can work, be careful
about maintenance and exiting library for parallelisation

– DSL language, but be careful about performance (scilab,
matlab...)

– If you are working with an existing software, or with “old-
school” people, or if you have no choice, choose
FORTRAN

• => 90% of the software in our community are in FORTRAN,
you have to deal with it

97.

Conclusion

• The pessimist

– A lot of HPC application just don't fit onto GPU => rewrite

– Things are moving fast, take your time to do safer choice
• Hardware design
• Programming model
• Programming language
• Compiler

– Your algorithmic transformation for current many-core will
need to evolve again in the coming years

– I will need a computer scientist in my lab :(

– Free lunch is over, the long and regular evolution of CPU
has end, we enter a new era

98.

Conclusion

• The optimist

– HPC application and parallelism have a long history

– Things are moving forward and converge:
• Hardware design
• Programming model
• Programming language
• Compiler

– Your algorithmic transformation for current many-core will
be useful for future many core

– I will have a computer scientist in my lab :)

– Science will benefit from huge computing power

– As long as it is difficult to do your job, no body will take it
from you ;)

99.

Conclusion

• Thank you all!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99

