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Goals
I Overview of the programming tools suite
I Explain the functionality of the tools
I Teach how to use the tools
I Hands-on

3 / 253



Introduction to Performance Engineering

Performance factors of parallel applications
“Sequential” factors

I Computation
I Cache and memory
I Input/output

“Parallel” factors
I Partitioning/decomposition
I Communication
I Multithreading
I Synchronization
I Parallel I/O
I Mapping
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Performance engineering workflow

Prepare application
Collect the relevant data to the
execution of the instrumented
application
Identification of performance
metrics
Presentation of results
Modifications in order to reduce
performance problems
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Metrics of performance

How often an event occurs
The duration of some intervals, e.g. the time spent some communication
calls
The size of the messages during the communication
Derived metrics
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Example

Execution time
How many times a function is called
IPC (Instructions per cycle)
FLOPS

7 / 253



Execution time

Wall-clock time
I Includes waiting time
I Includes the time consumed by other applications in time-sharing

environments

CPU time
I Time spent by the CPU for the application
I No measurement of the context-switched out time

Use mean or minimum of several runs
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Inclusive vs. Exclusive values
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Measurement techniques

Methods for the measurement
I Sampling
I Code instrumentation

Record the data
I Profiling
I Tracing
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Sampling

Statistical inference of program
behaviour
Not very detailed information
Only for long-running applications
Unmodified executables
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Instrumentation

Every event is captured
Detailed information
Processing of source-code or
executable
Overhead
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Instrumentation techniques

Static instrumentation
Dynamic instrumentation
Code Modification

I Manually
I Automatically

F Preprocessor
F Compiler
F Linking against a pre-instrumented library
F Binary-rewrite
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Critical issues

Accuracy
I Intrusion overhead
I Perturbation
I Accuracy of times & counters

Granularity
I Number of measurements?
I How much information?
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Profiling

Record of aggregated information
I Total, maximum ...

For measurements
I Time
I Counts

F Function calls
F Bytes transferred
F Hardware counters

I Functions, call sites
I Processes, threads
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Types of profiles

Flat profile
I Metrics per routine for the instrumented region
I Calling context is not taken into account

Call-path profile
I Metrics per executed call path
I Distinguished by partial calling context

Special profiles
I Profile specific events, e.g. MPI calls
I Comparing processes/threads
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Tracing I

Recording all the events for the demanded code
I Enter/leave of a region
I Send/receive a message

Extra information in event record
I Timestamp, location, event type
I Event-related info (e.g.,communicator, sender/receiver)

Chronologically ordered sequence of event records
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Tracing II
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Tracing vs. Profiling

Tracing advantages
I It is posible to reconstruct the dynamic application behaviour on any required

level of abstraction
I From the tracing it is possible to extract the profiling.

Disadvantages
I The traces can get really large especially when using a lot of processes or

the applications is constituted by many events
I Writing events to a file at runtime causes perturbation
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Performance analysis procedure

Performance problem?
I Time / speedup / scalability measurements

Key bottleneck?
I MPI/ OpenMP / Flat profiling

Where is the key bottleneck?
I Call-path profiling

Why?
I Hardware counter analysis, selective instrumentation for better analysis

Scalability problems?
I Load imbalance analysis, compare profiles at various sizes function by

function
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Performance Application Programming (PAPI)

Middleware that provides a consistent and efficient programming interface for
the performance counter hardware found in most major microprocessors
Hardware performance counters can provide insight into:

Whole program timing
Cache behaviors
Branch behaviors
Memory and resource contention and access patterns
Pipeline stalls
Floating point efficiency
Instructions per cycle
Subroutine resolution
Process or thread attribution
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PAPI

Events
I Platform-neutral Present Events (e.g., PAPI_TOT_INS)
I Platform-dependent Native Events (e.g., L3_CACHE_MISS)

Present Events
I Standard set of over 100 events for application performance tuning (not all of

them available on every processor)
I No standardization of the exact definition
I Mapped to either single or linear combinations of native events on each

platform
I The papi_avail provides the available preset events on a given platform

Native events
I All the countable events by the CPU
I Same interface as for preset events
I The papi_native_avail provides the available native events on a given

platform

It is needed to use the tool papi_event_chooser in order to find out the
compatible set of events that can be measured at the same moment
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Intel XEON X5675
% papi_avail
Available events and hardware information.
--------------------------------------------------------------------------------
PAPI Version : 4.2.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Xeon(R) CPU X5675 @ 3.07GHz (44)
CPU Revision : 2.000000
CPUID Info : Family: 6 Model: 44 Stepping: 2
CPU Megahertz : 3066.216064
CPU Clock Megahertz : 3066
Hdw Threads per core : 2
Cores per Socket : 6
NUMA Nodes : 2
CPU’s per Node : 12
Total CPU’s : 24
Number Hardware Counters : 7
Max Multiplex Counters : 64

The following correspond to fields in the PAPI_event_info_t structure.

Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
...
API_VEC_SP 0x80000069 Yes No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a Yes No Double precision vector/SIMD instructions
-------------------------------------------------------------------------
Of 107 possible events, 57 are available, of which 14 are derived.
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PAPI Counter Interfaces

PAPI provides 3 interfaces:
Low Level API manages hardware
events in user defined groups
called EventSets
High Level API provides the ability
to start, stop and read the
counters for a spacific list of
events
Graphical and and-user tools
provide facile data collection and
visualization
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Component PAPI (PAPI-C)

Motivation:
I Hardware counters for network counters, thermal & power measurement
I Measure multiple counter domains at once

Goals:
I Isolate hardware dependent code in a separable component module
I Add or modify API calls to support access to various components
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Component PAPI
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Scalable performance analysis of
large-scale parallel applications

Scalasca
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Techniques

Profile analysis:
I Summary of aggregated metrics

F per function/call-path and/or per process/thread
I mpiP, TAU, PerfSuite, Vampir

Time-line analysis
I Visual representation of the space/time sequence of events
I An execution is demanded

Pattern analysis
I Search for characteristic event sequences in event traces
I Manually: Visual time-line analysis
I Automatically: Scalasca
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Automatic trace analysis

Trace an application
Automatic search for patterns on inefficient behaviour
Classification of behaviour
Much faster than manual trace analysis
Scalability
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Overview

Supports parallel programming paradigms & languages
I MPI, OpenMP. OpenMP/MPI
I Fortran, C, C++

Profiling, Tracing, Event trace analysis
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Instrumentation

Code instrumentation
Add instrumentation and
measurement library into
application executable
MPI standard profiling interface
(PMPI) to acquire MPI events
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Measurement runtime summarization

Measurements summarized by
thread & call-path during
execution
Analysis report unified
Presentation of summary analysis
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Measurement event tracing & analysis

Time-stamped events buffered for
each thread
Flushed to files
Trace analysis
Presentation of analysis report
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Measurement event tracing & analysis

Scalasca instrumenter (SKIN)
Scalasca measurement collector
& analyzer (SCAN)
Scalasca analysis report examiner
(SQUARE)
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EPIK

Measurement & analysis runtime system
I Manages runtime configuration and parallel execution
I Configuration specified by EPIK.CONF (epik_conf)
I An experiment archive is created (epik_<title>)
I Optional:

F Runtime summarization report
F Tracing
F Filtering of events
F Hardware counter measurements

Experiment archive directory
I Contains measurement and related files
I Contains analysis reports

35 / 253



Scalasca actions

Commands
scalasca -instrument | skin [options] <compile-or-link-command>
scalasca -analyze | scan [options] <application-launch-command>
scalasca -examine | square [options] <experiment-archive|report>
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CUBE3

Parallel program analysis report exploration tools
I Libraries for XML report
I Algebra utilities for report processing
I GUI for interactive analysis exploration

Used by Scalasca, Marmot, ompP, PerfSuite, etc.
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CUBE3 Analysis

Three coupled tree browsers
I Performance property
I Call-tree path
I System location

CUBE3 displays severities
I Value for precise comparison
I Colour for easy identification of hotspots
I Inclusive value when closed and exclusive value when expanded
I Customizable through display mode
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CUBE3 - summary
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CUBE3 - trace
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Scalasca summary: LU benchmark, class B, (NPB) on
AMD1 node

11.69% of time
spent in MPI
point-to-point
communication
97.35% of which is
on program
callpath
MAIN/SSOR
With 17.0% std
dev over 32
processes
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Scalasca trace: LU benchmark, class B, (NPB) on
AMD1 node

We can observe
that the MPI
point-to-point is
separated to Late
Sender and Late
receiver
Late Sender is the
53.57% of the total
execution
99.88% of this
time is in SSOR
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Scalasca 1.4

Automatic function instrumentation and filtering
I GCC, IBM, Intel, Pathscale & PGI compilers
I Optional PDToolkit selective instrumentation
I Declare which functions to exclude or include for the instrumentation

MPI measurements & analysis
I scalable runtime summarization & event tracing
I Just re-link the application executable

OpenMP measurement & analysis
I demanded application source instrumentation
I thread management

Hybrid OpenMP/MPI measurement & analysis
I combined the previous
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Scalasca 1.4

Measurement configuration of MPI events wrappers
I P2P,COLL,ENV,CG,TOPO, ...

MPI RMA communication analysis
Reduced runtime overhead & lowered distortion at scale
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Hands-on: NPB-MPI / LU

Scalasca
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Performance analysis steps

1 Program instrumentation: skin
2 Summary measurement colelction & analysis: scan [-s]
3 Summary analysis report examination: square
4 Summary experiment scoring: square -s
5 Event trace collection & analysis: scan -t
6 Event trace analysis report examination: square

Configuration & customization
I Instrumentation, Measurement, Analysis, Presentation
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Connection

Connect to the nodes with enabled graphics connection

% ssh -X username@intelnode
% ssh -X username@amd1node
% ssh -X username@amd2node
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NPB-MPI suite

The NAS Parallel Benchmark suite
I Download from
http://www.nas.nasa.gov/publications/npb.html

I 9 benchmarks
I Configurable for various sizes & size of problems

Copy the NAS to your home folder

% cp -r /srv/app/data/tutorial .
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Benchmarks, Clusters

NAS Parallel Benchmarks (NPB):
Mixed case : LU factorization (LU)

I Instances
F From 2 to 32 processes
F Classes A and B

Compile

% make LU NPROCS=<number> CLASS=<class>

I Where <number> is the number of the processes power of two and <class>
is the letter of the class, S,W,A,B,C,D or E
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NPB -MPI / LU

Studying the MPI version of the LU benchmark from the NAS Parallel
Benchmarks (NPB) suite
Summary measurement & analysis

I Automatic instrumentation
I Summary analysis report examination
I PAPI hardware counter metrics

Trace measurement collection & analysis
I Filter determination, specification & configuration
I Automatic trace analysis report patterns

Manual and PDT instrumentation
Measurement configuration
Analysis report algebra
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Scalasca usage

Execute scalasca
% scalasca
Scalasca 1.4
Toolset for scalable performance analysis of large-scale parallel
applications usage: scalasca [-v][-n] {action}

1. prepare application objects and executable for measurement:
scalasca -instrument <compile-or-link-command> # skin

2. run application under control of measurement system:
scalasca -analyze <application-launch-command> # scan

3. interactively explore measurement analysis report:
scalasca -examine <experiment-archive|report> # square

-v: enable verbose commentary
-n: show actions without taking them
-h: show quick reference guide (only)
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NPB instrumentation

Go to the NAS MPI root path

% cd ~/tutorial/NPB3.3-MPI

Add compile/link commands in Makefile (config/make.def)

MPIF77=scalasca -instrument mpif77

or
MPIF77=$(PREP) mpif77

Clean up any previous file

% make clean

Compile the LU benchmark for class A and 8 processors

% make LU CLASS=A NPROCS=8

or
% make LU CLASS=A NPROCS=8 PREP=‘‘scalasca -instrument’’
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LU summary measurement

Enter the folder with the executables that are instrumented by Scalasca

% cd bin.scalasca

Execute the benchmark for 4 processes
% scalasca -analyze mpirun -np 8 lu.A.8
S=C=A=N: Scalasca 1.4 runtime summarization
S=C=A=N: ./epik_lu_8_sum experiment archive
S=C=A=N: Wed Jan 25 15:17:17 2012: Collect start
/usr/bin/mpirun -np 8 lu.A.8
[00000]EPIK: Created new measurement archive ./epik_lu_8_sum
[00000]EPIK: Activated ./epik_lu_8_sum [NO TRACE] (0.011s)
[... output ...]
[00000]EPIK: 69 unique paths (64 max paths, 5 max frames,
0 unknowns)
[00000]EPIK: Unifying... done (0.002s)
[00000]EPIK: Collating... done (0.002s)
[00000]EPIK: Closed experiment ./epik_lu_8_sum (0.004s)
maxHeap(*)=20.695/81.918MB
S=C=A=N: Wed Jan 25 15:17:34 2012: Collect done (status=0) 17s
S=C=A=N: ./epik_lu_8_sum complete.
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LU summary measurement

Execute the Scalasca GUI
% scalasca -examine epik_lu_8_sum

The measurement archive directory contains
I a file that contains the execution output (epik.log)
I the current configuration (epik.conf)
I the analysis report that was collated after measurement (epitome.cube)
I the complete analysis report produced during post-processing

(summary.cube.gz)
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LU summary measurement view
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LU summary measurement, system tree
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LU summary measurement, box plot
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LU summary measurement, topology
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LU summary measurement, call tree
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LU summary measurement, metric tree
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LU summary measurement, source browser

61 / 253



What we did till now

Instrument an application
Analyze its execution with a summary measurement
Examine it with the interactive analysis report explorer GUI
Time metrics
Visit counts
MPI message statistics
Computational imbalance
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LU summary analysis result scoring
% scalasca -examine -s epik_lu_8_sum/
/srv/app/scalasca/bin/cube3_score -r ./epik_lu_8_sum/summary.cube.gz >
./epik_lu_8_sum/epik.score
Reading ./epik_lu_8_sum/summary.cube.gz... done.
Estimated aggregate size of event trace (total_tbc): 130098176 bytes
Estimated size of largest process trace (max_tbc): 17275190 bytes
(Hint: When tracing set ELG_BUFFER_SIZE > max_tbc to avoid
intermediate flushes or reduce requirements using file listing
names of USR regions to be filtered.)

INFO: Score report written to ./epik_lu_8_sum/epik.score

The estimated size of the traces will be 130MB
The maximum trace buffer is around to 17.3MB per process

I If the available buffer is smaller than 17.3MB, then there will be perturbation
because of flushes to the hard disk during the measurement

Region classification
I MPI (pure MPI library functions)
I OMP (pure OMP functions)
I USR (user-level source local computation)
I COM(combined USR with OpenMP/MPI)
I ANY/ALL (aggregate of all region types)
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LU summary analysis report
% less epik_lu_8_sum/epik.score
flt type max_tbc time % region

ANY 17275190 100.28 100.00 (summary) ALL
MPI 4574534 19.04 18.99 (summary) MPI
COM 2259600 52.82 52.67 (summary) COM
USR 10441032 28.30 28.22 (summary) USR

USR 9692928 1.37 1.37 exact_
MPI 2372550 1.84 1.84 MPI_Send
MPI 2147556 5.85 5.83 MPI_Recv
COM 1493952 0.46 0.46 exchange_1_
USR 373488 12.63 12.59 jacu_
COM 373488 13.06 13.02 blts_
USR 373488 13.34 13.30 jacld_
COM 373488 16.29 16.25 buts_
MPI 35190 0.02 0.01 MPI_Irecv
MPI 18360 2.43 2.42 MPI_Wait
COM 12192 0.70 0.70 exchange_3_
COM 6072 20.48 20.42 rhs_
USR 768 0.00 0.00 timer_clear_

...
USR 48 0.94 0.94 setiv_
USR 48 0.00 0.00 timer_start_
USR 48 0.02 0.02 setbv_
USR 48 0.00 0.00 timer_stop_
USR 48 0.00 0.00 timer_read_
EPK 48 0.11 0.11 TRACING
MPI 24 0.00 0.00 MPI_Finalize
COM 24 0.04 0.04 error_

...
USR 24 0.00 0.00 verify_
USR 24 0.00 0.00 print_results_
COM 24 0.00 0.00 main
COM 24 0.32 0.32 erhs_
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LU summary analysis report

The estimated size of the traces will be 130MB
The maximum trace buffer is around to 17.3MB per process

I If the available buffer is smaller than 17.3MB, then there will be perturbation
because of flushes to the hard disk during the measurement

export ELG_BUFFER=17300000

28.22% of the total execution is caused by USR regions
I We should check if there is overhead because of frequently executed small

routines

Solutions:
I Declare the appropriate buffer
I Declare a filter file listing (USR) regions in order not to be measured
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LU summary analysis report filtering
We choose the USR regions with small percentage of the execution time
and big trace buffer in comparison with the other regions
% cat lu.filtering
# filtering for the LU benchmark
exact_

Report scoring with the corresponding filter file
% scalasca -examine -s -f lu.filtering ./epik_lu_8_sum/
/srv/app/scalasca/bin/cube3_score -f lu.filtering -r
./epik_lu_8_sum/summary.cube.gz >
./epik_lu_8_sum/epik.score_lu.filtering
Reading ./epik_lu_8_sum/summary.cube.gz... done.
Applying filter "lu.filtering":
Estimated aggregate size of event trace (total_tbc): 54560192 bytes
Estimated size of largest process trace (max_tbc): 7582262 bytes
(Hint: When tracing set ELG_BUFFER_SIZE > max_tbc to avoid
intermediate flushes.)

INFO: Score report written to
./epik_lu_8_sum/epik.score_lu.filtering

Now the estimated size of the traces is 54.6MB, decreased by 58% in
comparision with the non filtering approach
The maximum trace buffer is 7.6MB 66 / 253



LU summary analysis report with filtering

% less epik_lu_8_sum/epik.score_lu.filtering
flt type max_tbc time % region
- ANY 17275190 100.28 100.00 (summary) ALL
- MPI 4574534 19.04 18.99 (summary) MPI
- COM 2259600 52.82 52.67 (summary) COM
- USR 10441032 28.30 28.22 (summary) USR

+ FLT 9692928 1.37 1.37 (summary) FLT

* ANY 7582262 98.91 98.63 (summary) ALL-FLT
- MPI 4574534 19.04 18.99 (summary) MPI-FLT

* COM 2259600 52.82 52.67 (summary) COM-FLT

* USR 748152 26.93 26.85 (summary) USR-FLT

+ USR 9692928 1.37 1.37 exact_
- MPI 2372550 1.84 1.84 MPI_Send
- MPI 2147556 5.85 5.83 MPI_Recv
- COM 1493952 0.46 0.46 exchange_1_
- USR 373488 12.63 12.59 jacu_
- COM 373488 13.06 13.02 blts_
...

The mark + indicates the filtered routines
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LU filtered summary measurement
Save the previous measurement

% mv epik_lu_8_sum epik_lu_8_sum_no_filter

Enable the filtering and the corresponding file

% export EPK_FILTER=lu.filtering

Execute the LU benchmark for class A and 8 processes
% scalasca -analyze mpirun -np 8 lu.A.8
S=C=A=N: Scalasca 1.4 runtime summarization
S=C=A=N: ./epik_lu_8_sum experiment archive
S=C=A=N: Tue Apr 12 00:06:01 2011: Collect start
/srv/app/openmpi/bin//mpirun -np 8 lu.A.8
[00000]EPIK: Created new measurement archive ./epik_lu_8_sum
[00000]EPIK: EPK_FILTER "lu.filtering" filtered 1 of 222 functions
[00000]EPIK: Activated ./epik_lu_8_sum [NO TRACE] (0.009s)
[... output ...]
[00000]EPIK: 66 unique paths (61 max paths, 5 max frames, 0 unknowns)
[00000]EPIK: Unifying... done (0.005s)
[00000]EPIK: Collating... done (0.005s)
[00000]EPIK: Closed experiment ./epik_lu_8_sum (0.011s)
maxHeap(*)=15.469/121.660MB
S=C=A=N: Tue Apr 12 00:06:14 2011: Collect done (status=0) 13s
S=C=A=N: ./epik_lu_8_sum complete.
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LU filtered summary report

Examine the scoring of the new measuremet
% scalasca -examine -s epik_lu_8_sum
INFO: Post-processing runtime summarization report...
/srv/app/scalasca/bin/cube3_score -r ./epik_lu_8_sum/summary.cube.gz >
./epik_lu_8_sum/epik.score
Reading ./epik_lu_8_sum/summary.cube.gz... done.
Estimated aggregate size of event trace (total_tbc): 54560192 bytes
Estimated size of largest process trace (max_tbc): 7582262 bytes
(Hint: When tracing set ELG_BUFFER_SIZE > max_tbc to avoid intermediate
flushes or reduce requirements using file listing names of USR regions
to be filtered.)

INFO: Score report written to ./epik_lu_8_sum/epik.score
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LU filtered summary report

View the score file
% less epik_lu_8_sum/epik.score
flt type max_tbc time % region

ANY 7582262 98.10 100.00 (summary) ALL
MPI 4574534 18.62 18.98 (summary) MPI
COM 2259600 52.43 53.45 (summary) COM
USR 748152 26.93 27.45 (summary) USR

MPI 2372550 1.68 1.71 MPI_Send
MPI 2147556 6.22 6.34 MPI_Recv
COM 1493952 0.45 0.46 exchange_1_
COM 373488 16.20 16.52 buts_
USR 373488 12.61 12.85 jacu_
COM 373488 12.98 13.23 blts_

...

Reduction on the execution time (for bigger sizes of problems the
difference is more obvious)
Small decrease of the MPI and COM timings.
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LU trace measurement collection
Execute the application with the “-t” flag
% scalasca -analyze -t mpirun -np 8 lu.A.8
S=C=A=N: Scalasca 1.4 trace collection and analysis
S=C=A=N: ./epik_lu_8_trace experiment archive
S=C=A=N: Tue Apr 12 00:45:59 2011: Collect start
/srv/app/openmpi/bin//mpirun -np 8 lu.A.8
[00000]EPIK: Created new measurement archive ./epik_lu_8_trace
[00000]EPIK: EPK_FILTER "lu.filtering" filtered 1 of 222 functions
[00000]EPIK: Activated ./epik_lu_8_trace [10000000 bytes] (0.206s)
[ ... output ... ]
[00000]EPIK: Flushed 6057882 bytes to file ./epik_lu_8_trace/ELG/00000
[00000]EPIK: Unifying... done (0.012s)
[00000]EPIK: Collating... done (0.012s)
[00001]EPIK: Flushed 7582272 bytes to file ./epik_lu_8_trace/ELG/00001
[00002]EPIK: Flushed 7582272 bytes to file ./epik_lu_8_trace/ELG/00002
[...]
[00000]EPIK: 1flush=0.006GB@11.549MB/s, Pflush=0.045GB@77.119MB/s
[00000]EPIK: Closed experiment ./epik_lu_8_trace (1.125s)
maxHeap(*)=16.211/125.527MB
S=C=A=N: Tue Apr 12 00:46:18 2011: Collect done (status=0) 19s
S=C=A=N: Tue Apr 12 00:46:18 2011: Analyze start
/srv/app/openmpi/bin//mpirun -np 8 /srv/app/scalasca/bin/scout.mpi
./epik_lu_8_trace

One file per MPI rank is created in the experiment directory
epik_lu_8_trace

71 / 253



LU trace measurement analysis

Scalasca provides the SCOUT tool, a parallal trace analyzer which
analyzes the trace files and produce an analysis report
S=C=A=N: Tue Apr 12 00:46:18 2011: Collect done (status=0) 19s
S=C=A=N: Tue Apr 12 00:46:18 2011: Analyze start
/srv/app/openmpi/bin/mpirun -np 8 /srv/app/scalasca/bin/scout.mpi
./epik_lu_8_trace
SCOUT Copyright (c) 1998-2011 Forschungszentrum Juelich GmbH

Analyzing experiment archive ./epik_lu_8_trace

Reading definitions file ... done (0.003s).
Reading event trace files ... done (0.734s).
Preprocessing ... done (0.058s).
Analyzing trace data ... done (0.753s).
Writing report files ... done (0.026s).

Max. memory usage : 26.234MB

Total processing time : 1.593s
S=C=A=N: Tue Apr 12 00:46:21 2011: Analyze done (status=0) 3s
Warning: 19.605MB of analyzed trace data retained in ./epik_lu_8_trace/ELG!
S=C=A=N: ./epik_lu_8_trace complete.

The maximum amount of memory used by any process is 26.234MB
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LU trace measurement, metric tree, communication

% square epi_lu_8_trace
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EPIK user instrumentation API, Fortran

#include ‘‘epik_user.inc’’

subroutine foo(...)
declarations
EPIK_FUNC_REG("foo")
EPIK_USER_REG(r_name,"iteration loop")
EPIK_FUNC_START()
...
EPIK_USER_START(r_name)
do i= 1, 100
...
end do
EPIK_USER_END(r_name)
...
EPIK_FUNC_END()

end subroutine foo

74 / 253



EPIK user instrumentation API, C/C++
#include ‘‘epik_user.h’’

void foo(...)
{
/* declarations */
EPIK_USER_REG(r_name,"iteration loop");
EPIK_FUNC_START();
...
EPIK_USER_START(r_name);
for (i = 0; i < 10; ++i)
{
...
}
EPIK_USER_END(r_name);
...
EPIK_FUNC_END();

}

In order to compile the source code with EPIK commands we have to use
the “-user” flag
scalasca -instrument -user mpif77

We can mark a specific area and observe its performance during the
analysis

75 / 253



Automatic instrumentation using PDT

In order to enable PDT-based source-code instrumentation, the option
“-pdt” is required and disable the compiler instrumentation by
“-comp=none”
% scalasca -instrument -pdt -comp=none mpif77 ...

Option for selective instrumentation file
% scalasca -instrument -pdt -comp=none -optTauSelectFile=lu.pdt mpif77 ...

Note: For Fortran 77 most times is needed to give an extra option
% scalasca -instrument -pdt -comp=none -optTauSelectFile=lu.pdt mpif77 \
-ffixed-line-length-0

Format of the selective instrumentation file
I Exclude files

BEGIN_FILE_EXCLUDE_LIST
test.c # Excludes file test.c
foo*.c # Excludes all C files with prefix ’foo’

END_FILE_EXCLUDE_LIST
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Automatic instrumentation using PDT II
Exclude functions
BEGIN_EXCLUDE_LIST
# Exclude C function matmult
void matmult(Matrix*, Matrix*, Matrix*) C

# Exclude C++ functions with prefix ’sort_’ and a
# single int pointer argument
void sort_#(int *)

# Exclude all void functions in namespace ’foo’
void foo::#

END_EXCLUDE_LIST

The mark # is widlcard for a routine name and the mark * is a wildcard
character
Include functions for instrumentation
BEGIN_INCLUDE_LIST/END_INCLUDE_LIST

Exclude the function EXACT from the LU benchmark
% cat lu.pdt
BEGIN_EXCLUDE_LIST
EXACT
END_EXCLUDE_LIST
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Automatic instrumentation using PDT III

Declare the appropriate compile command in the config/make.def file
MPIF77 = scalasca -instrument -pdt -comp=none -optTauSelectFile=/path/lu.pdt \
mpif77 -ffixed-line-length-0

Compile the LU benchmark, for class A and 8 processes from the NPB
root path

% make LU NPROCS=8 CLASS=A

Enter the Scalasca folder and execute the benchmark
% cd bin.scalasca
% scalasca -analyze mpirun -np 8 lu.A.8

Now if you apply the scoring and see the output file

% scalasca -examine -s epik_lu_8_sum
% cat epik_lu_8_sum/epik.score | grep EXACT

Then there is no function EXACT that is traced
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LU summary measurement, hardware counters
Measure the PAPI hardware counters:

I PAPI_TOT_INS (total instructions completed)
I PAPI_FP_OPS (floating point operations)
I PAPI_L2_TCM (L2 cacHe misses)
I PAPI_RES_STL (stalled cycles on any resource)

% export EPK_METRICS=PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:PAPI_RES_STL
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CUBE3 algebra utilities

Extract only the SSOR region with its sub-regions
% cube3_cut -r ’SSOR’ epik_lu_8_sum_PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:PAPI_RES_STL/epitome.cube
Reading epik_lu_8_sum_PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:PAPI_RES_STL/epitome.cube ... done.
++++++++++++ Cut operation begins ++++++++++++++++++++++++++
++++++++++++ Cut operation ends successfully ++++++++++++++++
Writing cut.cube.gz ... done.

View the new CUBE3 file
% square cut.cube.gz
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LU summary measurement, cut for SSOR
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LU summary measurement, compare two executions

Change the name of the experiment archive directory in order to execute
again the experiment with different compiler options
% mv epik_lu_8_sum_PAPI_TOT_INS\:PAPI_FP_OPS\:PAPI_L2_TCM\:PAPI_RES_STL/ \
epik_lu_b_8_o3_sum_PAPI_TOT_INS\:PAPI_FP_OPS\:PAPI_L2_TCM\:PAPI_RES_STL/

Declare the option “-O2” in the file config/make.def

FFLAGS = -O2

Compile the LU benchmark, class B, 8 processes

% make clean
% make LU NPROCS=8 CLASS=B

Enter the directory with the executables

% cd bin.scalasca

Execute the benchmark

% scalasca -analyze mpirun --bind-to-core -np 8 lu.B.8
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LU summary measurement, compare two executions II

Compare the two executions
% cube3_diff epik_lu_b_8_o2_sum_PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:\
PAPI_RES_STL/epitome.cube epik_lu_8_sum_PAPI_TOT_INS:PAPI_FP_OPS: \
PAPI_L2_TCM:PAPI_RES_STL/epitome.cube
Reading epik_lu_b_8_o2_sum_PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM: \
PAPI_RES_STL/epitome.cube ... done.
Reading epik_lu_8_sum_PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM: \
PAPI_RES_STL/epitome.cube ... done.
++++++++++++ Diff operation begins ++++++++++++++++++++++++++
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Merging topologies... done.
INFO::Diff operation... done.
++++++++++++ Diff operation ends successfully ++++++++++++++++
Writing diff.cube.gz ... done.
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LU summary measurement, cut for SSOR
View the new CUBE3 file
% square diff.cube.gz

Not all the parts of the code were improved by the change of the
optimization option 84 / 253



CUBE3 utilities
There are more CUBE3 utilities:

Difference
% cube3_diff first.cube second.cube -o new.cube

Merge two different measurements with different metrics
% cube3_merge first.cube second.cube -o new.cube

Calculate the mean of many measurements
% cube3_mean first.cube second.cube third.cube fourth.cube \
-o new.cube

Compare two measurements if they are exactly the same
% cube3_cmp first.cube second.cube third.cube -o new.cube

Cut, re-root selected sub-trees
% cube3_cut -r name_of_sub_tree first.cube -o new.cube

There are more utilities, like cube3_clean
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LU benchmark, class B

We are going to execute the LU benchmark for class B and various number of
processors and observe performance issues.

Go to the root folder of the serial version of NPB and compile the LU
benchmark for class B
% cd ~/tutorial/NPB3.3-SER
% make clean
% make LU CLASS=B

Go to the executable directory and execute the benchmark

% cd bin.scalasca
% scalasca -analyze ./lu.B.x

Explore the measurement analysis report
% square epik_lu_O_trace_PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:\
PAPI_RES_STL
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LU measurement summary for the serial version and
class B

The computation execution time is 514.61 seconds and there are
8.15e11 stalled cycles on any resource
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Similar for the MPI version of the LU benchmark, compile it for 2
processors and class B

% cd ~/tutorial/NPB3.3-MPI
% make clean
% make LU NPROCS=2 CLASS=B

Compile the benchmark also for 4,8,16 and 32 processors
Go to the executable directory

% cd bin.scalasca

Declare the appropriate ELG buffer

% echo ‘‘export ELG_BUFFER_SIZE=60000000’’ >> \
~/.bashrc
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Execute the LU benchmark

Execute the benchmarks
% scalasca -analyze mpirun -np 2 --bind-to-core lu.B.2
% scalasca -analyze mpirun -np 4 --bind-to-core lu.B.4
% scalasca -analyze mpirun -np 8 --bind-to-core lu.B.8
% scalasca -analyze mpirun -np 16 --bind-to-core lu.B.16
% scalasca -analyze mpirun -np 32 --bind-to-core lu.B.32

Let’s examine the measurement analysis report for the 2 processors

% square epik_lu_2_sum_PAPI_TOT_INS:PAPI_FP_OPS:\
PAPI_L2_TCM:PAPI_RES_STL
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LU measurement summary for 2 processors, class B,
execution time

The total computation execution time is 365.14 seconds for all the
processors (sum) and the exclusive time for the SSOR function is 9.45
seconds
The communication time is less than 7 seconds

90 / 253



LU measurement summary for 2 processors, class B,
stalled cycles on any resource

There are 5.3e11 stalled cycles on any resource for all the processors
(around to 8.6e9 per processor)
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LU measurement summary for 4 processors, class B,
execution time

The total computation execution time is 352.89 seconds for all the
processors (sum) and the exclusive time for the SSOR function is 9.91
seconds
The communication time is less than 16 seconds
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LU measurement summary for 4 processors, class B,
stalled cycles on any resource

There are 4.95e11 stalled cycles on any resource for all the processors
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LU measurement summary for 8 processors, class B,
execution time

The total computation execution time is 396.73 seconds for all the
processors (sum) and the exclusive time for the SSOR function is 17.62
seconds
The communication time is less than 40 seconds
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LU measurement summary for 8 processors, class B,
stalled cycles on any resource

There are 5.92e11 stalled cycles on any resource for all the processors
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LU measurement summary for 16 processors, class B,
execution time

The total computation execution time is 486.97 seconds for all the
processors (sum) and the exclusive time for the SSOR function is 25.38
seconds
The communication time is less than 89 seconds
The value of the total instructions is increased by 28% 96 / 253



Comparison of the metrics for the Intel processor

There is no so big difference on the Intel processor and on older AMD
Opteron processors (2xx and 2xxx)
On Intel processor the difference is 11.5%
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LU measurement summary for 16 processors, class B,
stalled cycles on any resource

There are 7.85e11 stalled cycles on any resource for all the processors.
Check the variation per processor on the system tree
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LU measurement summary for 16 processors, class B,
stalled cycles on any resource for the region RHS
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LU measurement summary for 32 processors, class B,
execution time

The total computation execution time is 528.46 seconds for all the
processors (sum) and the exclusive time for the SSOR function is 26.08
seconds
The communication time is less than 177 seconds
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LU measurement summary for 32 processors, class B,
stalled cycles on any resource

There are 8.10e11 stalled cycles on any resource for all the processors.
Check the variation per processor on the system tree
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LU measurement summary for 32 processors, class B,
stalled cycles on any resource, box plot

The minimum value is 7.22e08 and the maximum 1.94e09 where the
mean is 1.24e09
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LU measurement summary for 32 processors, class B,
stalled cycles on any resource, box plot for RHS region

The minimum value is 9.41e09 and the maximum 1.39e10 where the
mean is 1.19e10
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LU measurement summary for 32 processors, class B,
computational imbalance, overload, box plot

Overload means that the execution time is bigger than the average value
of all the processes. There is no single participant, so this overload is
caused by more than one process
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LU measurement summary for 32 processors, class B,
computational imbalance, underload, box plot

Underload means that the execution time is less than the average value
of all the processes. There is no non-participant, so all the processes
execute the underloaded call-path
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LU measurement summary for 32 processors, class B,
computational imbalance, box plot for RHS region

We can observe that the underload value for the last process is big
enough in comparison with the rest ones
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Overal conclusions from the summary measurements

The floating operations remain stable but not the total completed
instructions. The variation on Intel processor or older AMD Opterons is
not so big as on this AMD Opteron
The role of the communication is important while we increase the number
of the processes
The computation time is increasing while we increase the number of the
processes
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LU measurement trace for 2 processors, class B,
identify communication issues

The late sender measures the lost time which is caused by a blocking
receive operation which is posted earlier than the corresponding send
operation
The process 0 delays the execution for 0.31 seconds because of the
MPI_Wait and the process 1 for 0.99 seconds 108 / 253



LU measurement trace for 2 processors, class B, visits

We can observe the number of the visits for each function, for example
there are 506 calls to MPI_Wait for the call-path RHS - EXCHANGE_3
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LU measurement trace for 4 processors, class B,
identify communication issues

The lost time because of the Late Sender is almost the same as in the
previous case
However we have a case of different sources which its duration is 2.02
seconds
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LU measurement trace for 4 processors, class B,
identify communication issues, late sender from
different sources

In this case or we should reverse the sequence of the MPI_Recv calls in
order to avoid this phenomenon or to use the MPI_ANY_SOURCE tag
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LU measurement trace for 8 processors, class B,
identify communication issues

The maximum duration of the Late Sender starts to increase (1.57
seconds for process 7)
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LU measurement trace for 16 processors, class B,
identify communication issues

Similar, the maximum duration of the Late Sender increases (2.29
seconds for process 15)
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LU measurement trace for 16 processors, class B,
identify communication issues, late sender from
different sources

The maximum delay because of the wrong sequence of the MPI_Recv
calls is 2.5 seconds for process 0
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LU measurement trace for 32 processors, class B,
identify communication issues

While in the previous cases the delay of the MPI_Wait was bigger than
the other MPI calls now it is not. It is crucial to study the other call paths
as the delay is 29.93 seconds for the MPI_Recv of the EXCHANGE_1
region
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LU measurement trace for 32 processors, class B,
identify communication issues, late sender from
different sources

For this case the duration of the Late Sender is increased and its
propotional to the total communication time is increased
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LU measurement trace for 32 processors, class B,
identify communication issues, wait at NxN

The total delay time caused by the MPI_Allreduce is 1.42 seconds where
the minimum delay is 0.02 seconds, the maximum 0.06 seconds and the
mean time is 0.04 seconds.
The boxplot provides useful information for a lot of processors with an
easy way 117 / 253



Conclusions

As we increase the number of the processors that participate to the
execution, the Late Sender delay is becoming bigger and should be fixed
by applying a better load balancing on the computation part as some
processors finish faster than the others
Moreover the delay because of the difference of sources is increasing
and the proposed ways to be fixed are by changing the sequence of the
MPI_Recv calls or use the MPI_ANY_SOURCE
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TAU Performance System

TAU
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TAU Performance System

Tuning and Analysis Utilities
Performance profiling and tracing
Instrumentation, measurement, analysis, visualization
Performance data management and data mining
Easy to integrate in application frameworks
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TAU Performance System

TAU is a performance evaluation tool
Parallel profiling and tracing
TAU can automatically instrument your source code through PDT for
routines, loops, I/O, memory, phases, etc.
TAU provides various analysis tools
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Simplest Case

Uninstrumented code:
% mpirun -np 4 lu.B.4

With TAU:
% mpirun -np 4 tau_exec ./lu.B.4
% paraprof
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How does TAU work?

Instrumentation:
I Adds probes to perform measurements
I Source code instrumentation
I Wrapping external libraries (I/O, CUDA, OpenCL)
I Rewriting the binary executable

Measurement:
I Profiling or Tracing
I Direct instrumentation
I Indirect instrumentation (sampling)
I Throttling
I Per-thread storage of performance data
I Interface with external packages (PAPI, Scalasca, Score-P, VampirTrace)

Analysis:
I Visualization of profiles and traces
I 3D visualization with paraprof, perfexplorer tools
I Trace conversion tools
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Using TAU: Introduction

TAU supports several measurement and thread option
Each measurement configuration of TAU corresponds to a unique stub
makefile and library that is generated during the configuration of the tool
Instrumenting source code automatically using PDT

I Choose the appropriate TAU stub makefile

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

I Use tau_f90.sh, tau_cxx.sh, tau_cc.sh as F90, C++ and C compilers

mpif90 test.f90 -> tau_f90.sh test.f90

Set runtime environment variables, execute application and analyze the
data
% pprof (text based profile display)
% paraprof (GUI)

Important: For calling pprof just execute pprof_tau for avoiding conflict
with the pprof tool
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TAU Instrumentation Approach

Supports both firect and indirect performance observation
I Direct instrumentation of program code
I Instrumentation invokes performance measurement
I Event measurement
I Indirect mode: sampling, hardware performance counter overflow

User-defined events
I Interval (Start/stop)
I Atomic, trigger at a single point with data
I Context events, atomic events with executing context
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Direct Observation: Events

Event types
I Interval events

F Measures exclusive & inclusive duration between events
F Metrics monotonically increase

I Atomic events
F Capture performance data state
F Shows extent variation of triggered values

Code events
I Routines, classes, templates
I Statement-level blocks, loops
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Interval and Atomic events
Interval events

Atomic events
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TAU Instrumentation/Measurement
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Direct Instrumentation Options in TAU

Source code Instrumentation
I Manual instrumentation
I Automatic instrumentation (PDT)
I compiler generates instrumented object code

Library level instrumentation
Runtime pre-loading and interception of library calls
Binary code instrumentation

I Rewrite the binary, runtime instrumentation
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TAU Instrumentation/Measurement
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PDT: Automatic source code instrumentation

Instrument source code using PDT and PAPI
I Choose the appropriate TAU stub makefile

% export TAU_MAKEFILE=/srv/app/tau/x86_64/lib/Makefile.\
tau-papi-mpi-pdt
% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh
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Time spent in each routine
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Generating a flat profile with MPI
Declare the appropriate environment variables
% export TAU_MAKEFILE= /srv/app/tau/x86_64/lib/Makefile.tau-papi-mpi-pdt

Declare the compiler (config/make.def)

MPIF77=tau_f90.sh

Compile the LU benchmark, class A, 4 processors

% make clean
% make LU NPROCS=4 CLASS=A

Execute the benchmark
% cd bin.tau
% mpirun -np 4 lu.A.4

Pack the profile data

% paraprof --pack app.ppk
% paraprof app.ppk

Click on “node 0”
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Automatic Instrumentation

Wrapper scripts
I Replace F77 (gfortran) with tau_f90.sh
I Automatically instruments Fortran source code and links with TAU MPI

Wrapper library
I Use tau_cc.sh and tau_cxx.sh for C and C++

CC = mpicc -> CC = tau_cc.sh
CXX = mpicxx -> CXX = tau_cxx.sh
F90 = mpif90 -> F90 = tau_f90.sh
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Instrumentation, re-writing Binaries with MAQAO
(beta)

Instrument:
% tau_rewrite lu.A.4 -T papi,pdt -o lu.A.4.inst

Perform measurement and execute it:
% mpirun --bind-to-core -np 4 lu.A.4.inst
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Paraprof with binary instrumentation through MAQAO

136 / 253



Paraprof with binary instrumentation through MAQAO
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Hands-on: NPB-MPI / LU

TAU
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Declare compiler wrappers

Enter the hands_on directory

% cd ~/tutorial/NPB3.3-MPI

Activate the TAU compiler wrappers

% vim config/make.def
#MPIF77 = mpif77
MPIF77 = tau_f90.sh

Re-compile

% make clean
% make LU CLASS=A NPROCS=4

Execute the benchmark
% cd bin.tau
% mpirun -np 4 lu.A.4
% paraprof &
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Compile-Time Environment Variables
-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optNoCompInst Do not revert to compiler instrumentation if

source instrumentation fails
-optTrackIO Wrap POSIX I/O call and calculates vol/bw of

I/O operations
-optKeepFiles Does not remove .pdb and .inst.* files
-optPreProcess Preprocess Fortran sources before instrumen-

tation
-optTauSelectFile=“<file” Specify selective instrumentation file for

tau_instrumentor
-optTauWrapFile=“<file>” Specify path to link_options.tau generated by

tau_gen_wrapper
-optHeaderInst Enable instrumentation of headers
-optLinking=“” Options passed to the linker
-optCompile=“” Options passed to the compiler
-optPdtF95Opts=“” Add options for Fortran parser in PDT
-optPdtF95Reset=“” Reset options for Fortran parser in PDT
-optPdtCOpts=“” Options for C parser in PDT
-optPdtCxxOpts=“” Options for C++ parser in PDT
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Compiling Fortran Codes with TAU

For using free format in .f files, use:

% export TAU_OPTIONS=’-optPdtF95Opts=‘‘-R free’’’

Use compiler based instrumentation instead of PDT:

% export TAU_OPTIONS=’-optCompInst’

Use C preprocessor directives in Fortran code:
% export TAU_OPTIONS=’-optPreProcess -optDetectMemoryLeaks’

Use an instrumentation specification file:

% export TAU_OPTIONS=’-optTauSelectFile=select.tau’
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Runtime Environment Variables in TAU

Environment Variable Default Description
TAU_TRACE 0 Setting to 1 turns on tracing
TAU_CALLPATH 0 Setting to 1 turns on callpath profiling
TAU_TRACK_MEMORY_LEAKS 0 Setting to 1 turns on leak detection
TAU_TRACK_HEAP 0 Setting to 1 turns on heap memory/headroom at routine entry &

exit
TAU_CALLPATH_DEPTH 2 Specifies depth of callpath
TAU_TRACK_IO_PARAMS 0 Setting to 1 with -optTrackIO
TAU_SAMPLING 1 Generates sample based profiles
TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using

context events
TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove

instrumentation in lightweight routines that are called frequently
TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling
TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called

over 100000 times and takes less than 10 usec of inclusive time per call
TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation

overhead
TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file, “snapshot”

generates snapshot per thread
TAU_METRICS TIME Setting to a comma separated list

(TIME:PAPI_TOT_INS:PAPI_FP_OPS)
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Loop level profile
Declare the options for TAU
% export TAU_PROFILE=1
% export TAU_PROFILE_FORMAT=Profile
% export TAU_OPTIONS=’-optTauSelectFile=select.tau’

% cat select.tau
BEGIN_INSTRUMENT_SECTION
loops routine=‘‘#’’
END_INSTRUMENT_SECTION

Compile the benchmark
% make clean
% make LU NPROCS=4 CLASS=A

Execute the benchmark
% cd bin.tau
% mpirun -np 4 lu.A.4

Analyze the profiling data
% paraprof --pack lu_a_4.ppk
% paraprof lu_a_4.ppk
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LU benchmark, loop profile
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PAPI profile with 2 or more metrics

Declare the environment variable TAU_METRICS
% export TAU_METRICS=TIME:PAPI_FP_OPS:PAPI_TOT_INS

Execute the benchmark
% mpirun -np 4 lu.A.4

Analyze the profiling data

% paraprof --pack lu_a_4_papi.ppk
% paraprof lu_a_4_papi.ppk

Click Options -> Show Derived Metric Panel -> click PAPI_TOT_INS, click
“/”, click TIME, Apply, choose the new metric by double clicking
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LU benchmark, loop profile, instructions per second
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Callpath Profile

Enable the Callpath Profile

% export TAU_CALLPATH=1
% export TAU_CALLPATH_DEPTH=10

Execute the benchmark
% mpirun -np 4 lu.A.4

Analyze the profiling data

% paraprof --pack lu_a_4_papi_callpath.ppk
% paraprof lu_a_4_papi_callpath.ppk
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Callpath Profile
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Call graph

From the ParaProf window, Click Windows -> Click Thread -> Click Call
Graph, select for which process you want to see the call graph
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Communication Matrix Display

Enable the communication matrix
% export TAU_COMM_MATRIX=1

Execute the benchmark
% mpirun -np 4 lu.A.4

Analyze the profiling data

% paraprof --pack lu_a_4_papi_comm.ppk
% paraprof lu_a_4_papi_comm.ppk

Click Windows -> Click 3D Communication Matrix
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Communication Matrix Display, exclusive time
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Communication Matrix Display, zoom in
communication

Inspect the duration of the MPI calls
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Communication Matrix Display, time, total instructions

Study the total instructions per function
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Trace the LU benchmark and prepare them for the
JumpShot

Enable the tracing feature

% export TAU_TRACE=1

Execute the benchmark
% mpirun -np 4 lu.A.4

Merge the tracefiles

% tau_treemerge.pl

Convert the traces to SLOG2 format
% tau2log2 tau.trc tau.edf -o app.slog2
% jumpshot app.slog2

The following example is for the LU benchmark, class B and 8 processes
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View traces from the Jumpshot tool
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View traces from the Jumpshot tool
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View traces from the Jumpshot tool
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View traces from the Jumpshot tool
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View traces from the Jumpshot tool
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Connection between various tools
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TAU Analysis
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Framework
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Prepare and execute the experiments
% export TAU_METRICS=TIME:PAPI_TOT_INS:PAPI_FP_OPS:PAPI_L2_TCM:\
PAPI_RES_STL
% export TAU_CALLPATH=0
% export TAU_PROFILE_FORMAT=profile

Compile the LU benchmark for classes A,B and 2-32 processes
% make clean; make LU NPROCS=2 CLASS=A
% make clean; make LU NPROCS=4 CLASS=A
...
% make clean; make LU NPROCS=2 CLASS=B
% make clean; make LU NPROCS=4 CLASS=B
...

Execute the experiments for class A and 4,8,16,32 processes (example
for class A and 4-8 processes)
% cd bin.tau
% rm -r MULTI* // if there are data from previous experiments
% mpirun -np 4 --bind-to-core lu.A.4
% paraprof --pack lu_a_4.ppk
% rm -r MULTI*
% mpirun -np 8 --bind-to-core lu.A.8
% paraprof --pack lu_a_8.ppk
% rm -r MULTI*
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Paraprof

% paraprof lu_a_4.ppk

Click Options -> Uncheck Stack Bars Together
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Paraprof
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Paraprof

Click Windows -> Click Thread -> Click User Events Statistics -> Select a
thread
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Compare different executions per function for LU
benchmark, class A

Add all the data to paraprof
Click File -> CLick Open... -> Click Select File(s) and select your file
Repeat the previous procedure for all the experiments for classes A and B
Select the name of the first experiment for class A, do right click on it and select
the option “Add Mean to Comparison Window”. A new window pops up, do not

close it
Repeat the procedure for all the experiments of class A
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Compare the duration of the functions while we
increase the number of the processes

While we double the number of the processes the duration of the RHS
function is decreased by around to 35%
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Compare the duration of the functions, studying the
floating operations

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_FP_OPS

The value of the floating operations do not justify the execution time of
the function RHS
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Compare the duration of the functions, studying L2
cache misses

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_L2_TCM

Neither the L2 cache misses justify the execution time of the function
RHS
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Compare the duration of the functions, studying the
total instructions

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_TOT_INS

The value of the total completed instructions can justify a part of the
mentioned difference
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Compare the duration of the functions, studying the
stalled cycles on any resource

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_RES_STL

Moreover the stalled cycles did not decrease as expected, thus the
difference can be caused by this reason also.
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Compare different executions per function for LU
benchmark, class B

Select the name of the first experiment for class B, do right click on it and select
the option “Add Mean to Comparison Window”. A new window pops up, do not
close it

Repeat the procedure for all the experiments of class B
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Compare the duration of the functions while we
increase the number of the processes

While we double the number of the processes the duration of the RHS
function is decreased by around to 36%
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Compare the duration of the functions, studying the
floating operations

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_FP_OPS

The value of the floating operations do not justify the execution time of
the function RHS
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Compare the duration of the functions, studying L2
cache misses

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_L2_TCM

Neither the L2 cache misses justify the execution time of the function
RHS
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Compare the duration of the functions, studying the
total instructions

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_TOT_INS

The value of the total completed instructions can justify a part of the
mentioned difference
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Compare the duration of the functions, studying the
stalled cycles on any resource

Click Options -> Click Select Metric -> Click Select Exclusive -> Click
PAPI_RES_STL

Moreover the stalled cycles did not decrease as expected, thus the
difference can be caused by this reason also.

178 / 253



Add the experiments on the database perfdmf

Add the experiments on the default database

% perfdmf_loadtrial -a sc_lu_a -x scaletest -n 4 lu_a_4.ppk
% perfdmf_loadtrial -a sc_lu_a -x scaletest -n 8 lu_a_8.ppk
% perfdmf_loadtrial -a sc_lu_a -x scaletest -n 16 lu_a_16.ppk
% perfdmf_loadtrial -a sc_lu_a -x scaletest -n 32 lu_a_32.ppk

% perfdmf_loadtrial -a sc_lu_b -x scaletest -n 4 lu_b_4.ppk
% perfdmf_loadtrial -a sc_lu_b -x scaletest -n 8 lu_b_8.ppk
% perfdmf_loadtrial -a sc_lu_b -x scaletest -n 16 lu_b_16.ppk
% perfdmf_loadtrial -a sc_lu_b -x scaletest -n 32 lu_b_32.ppk
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PerfExplorer, Total Execution Time for class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Total Execution Time -> Select the metric TIME ->

Click OK
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PerfExplorer, Stacked Bar Chart for class A and TIME

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Stacked Bar Chart -> Select the metric TIME ->

Click OK
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PerfExplorer, Stacked Bar Chart for class A and
PAPI_FP_OPS

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Stacked Bar Chart -> Select the metric
PAPI_FP_OPS -> Click OK
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PerfExplorer, Stacked Bar Chart for class A and
PAPI_TOT_INS

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Stacked Bar Chart -> Select the metric
PAPI_TOT_INS -> Click OK
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PerfExplorer, Relative Efficiency for class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Relative Efficiency -> Select the “The problem size
remains constant“-> Click OK
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PerfExplorer, Relative Efficiency for class A per event

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Relative Efficiency by event -> Select the metric
TIME -> Click OK -> Select the “The problem size remains constant“->

Click OK
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PerfExplorer, Relative Speedup for class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Relative Speedup -> Select the metric TIME -> Click
OK -> Select the “The problem size remains constant“-> Click OK
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PerfExplorer, Relative Speedup by event for class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Relative Speedup -> Select the metric TIME -> Click
OK -> Select the “The problem size remains constant“-> Click OK
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PerfExplorer, MPI Time for class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Group % of Total Runtime -> Select the metric TIME
-> Click OK -> Select MPI group -> Click OK
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PerfExplorer, Runtime Breakdown for class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric TIME ->

Click OK
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PerfExplorer, Runtime Breakdown PAPI_TOT_INS, for
class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric
PAPI_TOT_INS -> Click OK
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PerfExplorer, Runtime Breakdown PAPI_L2_TCM, for
class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric
PAPI_L2_TCM -> Click OK
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PerfExplorer, Runtime Breakdown PAPI_RES_STL, for
class A

Expand the database perfdmf -> Expland the Application name sc_lu_a
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric
PAPI_RES_STL -> Click OK
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PerfExplorer, Total Execution Time for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Total Execution Time -> Select the metric TIME ->

Click OK
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PerfExplorer, Stacked Bar Chart for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Stacked Bar Chart -> Select the metric TIME ->

Click OK
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PerfExplorer, Stacked Bar Chart for class B and
PAPI_FP_OPS

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Stacked Bar Chart -> Select the metric
PAPI_FP_OPS -> Click OK
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PerfExplorer, Stacked Bar Chart for class B and
PAPI_TOT_INS

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Stacked Bar Chart -> Select the metric
PAPI_TOT_INS -> Click OK
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PerfExplorer, Relative Efficiency for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Relative Efficiency -> Select the ”The problem size
remains constant“ -> Click OK
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PerfExplorer, Relative Efficiency for class B per event

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Relative Efficiency by event -> Select the metric
TIME -> Click OK -> Select the ”The problem size remains constant“->

Click OK
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PerfExplorer, Relative Speedup for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Relative Speedup -> Select the metric TIME -> Click
OK -> Select the “The problem size remains constant“-> Click OK
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PerfExplorer, Relative Speedup by event for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Relative Speedup -> Select the metric TIME -> Click
OK -> Select the “The problem size remains constant“-> Click OK
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PerfExplorer, MPI Time for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Group % of Total Runtime -> Select the metric TIME
-> Click OK -> Select MPI group -> Click OK
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PerfExplorer, Runtime Breakdown for class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric TIME ->

Click OK
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PerfExplorer, Runtime Breakdown PAPI_TOT_INS, for
class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric
PAPI_TOT_INS -> Click OK
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PerfExplorer, Runtime Breakdown PAPI_L2_TCM, for
class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric
PAPI_L2_TCM -> Click OK
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PerfExplorer, Runtime Breakdown PAPI_RES_STL, for
class B

Expand the database perfdmf -> Expland the Application name sc_lu_b
-> Select the experiment name scaletest
Click Charts -> Click Runtime Breakdown -> Select the metric
PAPI_RES_STL -> Click OK
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Apply dynamic phases on SSOR
Declare the appropriate TAU stub Makefile
% vim ~/.bashrc
% export TAU_MAKEFILE=/srv/app/tau/x86_64/lib/Makefile.tau\
-phase-papi-mpi-pdt

Declare where the phase starts and ends. The phase starts at the line 83 of the
file ssor.f and ends at line 202. Moreover it is called ”iteration“
% vim dyn_phase.pdt
BEGIN_INSTRUMENT_SECTION
dynamic phase name="iteration" file="ssor.f" line=83 to line=202
END_INSTRUMENT_SECTION

Declare the appropriate options
% vim ~/.bashrc
export TAU_OPTIONS=’-optPDTInst -optTauSelectFile=/path/ \
dyn_phase.pdt’

Compile the instances for 4-32 processes from the roof folder of NAS
% make clean; make LU NPROCS=4 CLASS=A
% make clean; make LU NPROCS=8 CLASS=A
...
% make clean; make LU NPROCS=4 CLASS=B
% make clean; make LU NPROCS=8 CLASS=B
...
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Apply dynamic phases on SSOR

Execute the benchmarks and pack the performance data

% cd bin.tau
% rm -r MULTI*
% mpirun --bind-to-core -np 4 lu.A.4
% paraprof --pack lu_a_4_phases.ppk
% rm -r MULTI*
% mpirun --bind-to-core -np 8 lu.A.8
% paraprof --pack lu_a_8_phases.ppk
...

View the data with the Paraprof tool

% paraprof lu_a_4_phases.ppk
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Paraprof and dynamic phases for the LU benchmark,
class B, 32 processes
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Create an expression of a new metric
Close the Paraprof sub-window (the one on top of the Paraprof Manager)
From the Paraprof Manager, Click Options -> Click Show Derived Metric
Panel
Expand the lu_a_4_phases experiment (example in the screenshot for
the lu_b_32_phases)
Select the PAPI_TOT_INS metric, after click the symvol ”/“ from the
Derived Metric Panel and select the metric PAPI_TOT_CYC
Click Apply

Similar create the metric of instructions per second (PAPI_TOT_INS /
TIME)
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Profile of a phase
Double click on the metric TIME of the lu_a_4_phases.ppk
Right click on any iteration (small continuous areas) and select Open
Profile for this Phase

We chose randomly the 38th iteration
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Study the phase

Select the first group of bar charts, and you can see the following

We can observe that for the 38th iteration the duration of the function
RHS varies from 0.021 to 0.028 seconds (33%)
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Study the instructions of a specific iteration
Click Options -> Select Metric -> Exclusive -> PAPI_TOT_INS

We can observe that for the 38th iteration the value of the total completed
instructions for the function RHS varies from 2.7475E7 to 4.7341E7
(72.3%)
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Study the floating operations of a specific iteration
Click Options -> Select Metric -> Exclusive -> PAPI_FP_OPS

We can observe that for the 38th iteration the value of the total completed
instructions for the function RHS varies from 1.16E7 to 1.49E7 (28.4%)
This indicates a computational imbalance at least for this iteration
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Study the cycles of a specific iteration

Click Options -> Select Metric -> Exclusive -> PAPI_TOT_CYC

We can observe that for the 38th iteration the value of the cycles for the
function RHS varies from 4.5E7 to 6.746E7 (49.9%)
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Study the instructions per cycle of a specific iteration
Click Options -> Select Metric -> Exclusive -> (PAPI_TOT_INS /
PAPI_TOT_CYC)

We can observe that for the 38th iteration the value of the IPC for the
function RHS varies from 0.56 to 0.758 (35.3%)
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Study the instructions per second of a specific iteration

Click Options -> Select Metric -> Exclusive -> (PAPI_TOT_INS / TIME)

We can observe that for the 38th iteration the value of the IPC for the
function RHS varies from 1.3E9 to 1.73E9 (33%)
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Study the stalled cycles of a specific iteration

Click Options -> Select Metric -> Exclusive -> PAPI_RES_STL

We can observe that for the 38th iteration the value of the cycles for the
function RHS varies from 3.58E7 to 5.59E7 (56%)
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Compare specific iterations
Double click the metric PAPI_TOT_INS from the Paraprof Manager
window
On the new window right click for example on node 3 and select ”Show
Thread Statistics Table“

Now we can choose an iteration and expand it
Sort by the ”Inclusive PAPI_TOT_INS“ by clicking on the head of the
column. The minimum value is 1.32E8 and the maximum 2.45E8 (85.6%)
so thereis computational imbalance
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Which functions cause the previous difference
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Conclusions

In general be sure that you are trusting the hardware
Be careful about your measurements. Identify any strange result that is
obvious
Plotting the characteristics of a function can be different related to each
loop
Create multiple dynamic phases for identifying strange behavior on
iterative procedures (be careful about the overhead)
The metric of the stalled cycles on any resource is a good one for
investigating if there is any overhead
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PerfExpert
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PerfExpert tool

Not only measures but also analyses performance
I Tell us where the slow code sections are as well why they perform poorly
I Suggests source-code changes (unfortunately only for icc compiler for now)
I Simple to use
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PerfExpert tool

Identification of potential causes for slow speed
I We can find a lot of information through various tools

How can we decide if a value is big or not?
I There are 25,578,391 L2 cache misses in a loop, is it good?
I How can we reduce it?
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PerfExpert tool

It uses the HPCToolkit
It executes the application many times for measuring various metrics
In every execution the total completed instructions are measured in order
to be able to compare the different execution in the case of any variation
It identifies and characterizes the causes of each bottleneck in each code
segment
Local Cycles Per Instruction (LCPI) introduced
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PerfExpert
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PerfExpert tool

During the installation, PerfExpert measures various architecture
parameters, L1 data access latency etc.
The LCPI values are a combination of PAPI metrics and architecture
parameters
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Local Cycles Per Instruction

Data Accesses, L1 data hits
(PAPI_LD_INS * L1_dlat) / PAPI_TOT_INS

Data Accesses, L2 data misses
((PAPI_L2_TCM - PAPI_L2_ICM) * mem_lat) / PAPI_TOT_INS

Instruction Accesses, L2 instruction misses
PAPI_L2_ICM * mem_lat / PAPI_TOT_INS
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PerfExpert tool

Easy to use, no need to re-compile
Compile your application as you already do
Execute the LU benchmark with PerfExpert
% mpirun --bind-to-core -np 4 perfexpert_run_exp ./lu.A.4

An XML file (experiment.xml) is created and we can see the output of the
functions which consume at least the 10% of the total execution with the
following command

perfexpert 0.1 experiment.xml
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Output
Function rhs_() (19.4% of the total runtime)
===============================================================================
ratio to total instrns % 0.........25...........50.........75........100

- floating point : 50 ************************
- data accesses : 40 *******************

* GFLOPS (% max) : 13 ******
-------------------------------------------------------------------------------
performance assessment LCPI good......okay......fair......poor......bad....

* overall : 0.9 >>>>>>>>>>>>>>>>>>>
upper bound estimates

* data accesses : 1.2 >>>>>>>>>>>>>>>>>>>>>>>
- L1d hits : 0.4 >>>>>>>>
- L2d hits : 0.4 >>>>>>>
- L2d misses : 0.4 >>>>>>>>

* instruction accesses : 1.2 >>>>>>>>>>>>>>>>>>>>>>>>
- L1i hits : 0.2 >>>>
- L2i hits : 0.0 >
- L2i misses : 1.0 >>>>>>>>>>>>>>>>>>>>

* data TLB : 0.0 >

* instruction TLB : 0.0 >

* branch instructions : 0.1 >
- correctly predicted : 0.0 >
- mispredicted : 0.0 >

* floating-point instr : 1.6 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- fast FP instr : 1.2 >>>>>>>>>>>>>>>>>>>>>>>>
- slow FP instr : 0.4 >>>>>>>
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Explanation

In general if the LCPI value is less than 0.5 then it is considered as a
good value
Compared to the value of the total completed instructions there are 50%
floating point operations and 40% data accesses
The value GFLOPS represent the percentage of the maximum possible
GFLOP value for the specific machine
The overal performance is the cycles per instruction which is not very
good in this example
It seems that the overhead is distributed on L1 data hits, L2 data hits and
L2 cache misses but is not too much each one
However the L2 instructions misses cost is really big
The fast FP instr includes the floating point multiply and add instructions
the slow FP instr includes the floating point divide instructions

Now we know where we should look for identifying the reason of the overhead
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Compare two executions

Rename your previous experiment file

% mv experiment.xml perf_lu_a_4.xml

Execute the LU benchmark for class A and 8 processes
% mpirun --bind-to-core -np 8 perfexpert_run_exp ./lu.A.8

Compare your data

% perfexpert 0.1 perf_lu_a_4.xml experiment.xml
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Output of the comparison
Function rhs_() (runtimes are 5.438s and 3.326s)
===============================================================================
ratio to total instrns % 0.........25...........50.........75........100

- floating point : ***********************
- data accesses : *******************

* GFLOPS (% max) : *****
-------------------------------------------------------------------------------
performance assessment LCPI good......okay......fair......poor......bad....

* overall : >>>>>>>>>>>>>>>>>>>222
upper bound estimates

* data accesses : >>>>>>>>>>>>>>>>>>>>>>>22
- L1d hits : >>>>>>>>
- L2d hits : >>>>>>>
- L2d misses : >>>>>>>>22

* instruction accesses : >>>>>>>>>>>>>>>>>>>>>11
- L1i hits : >>>>
- L2i hits : >
- L2i misses : >>>>>>>>>>>>>>>>>11

* data TLB : >

* instruction TLB : >

* branch instructions : >
- correctly predicted : >
- mispredicted : >

* floating-point instr : >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- fast FP instr : >>>>>>>>>>>>>>>>>>>>>>>>
- slow FP instr : >>>>>>>

The value 1 or 2 at the end of the evaluation means which application has
bigger value on this metric
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AutoSCOPE

Status
I Know that there is a performance problem
I Know why it performs poorly
I Do not know how to improve the performance

AutoSCOPE
I Suggests remedies based on analysis results

F Including code examples and compiler flags
F For the moment only for Intel compiler (soon for gcc?)

233 / 253



Use AutoSCOPE

Save the output of the perfexpert call

% perfexpert 0.1 perf_lu_a_4.xml > output_lu_a_4

Call the autoscope
% autoscope output_lu_a_4
Function rhs_() (19.4% of the total runtime)
=================================================================

* eliminate floating-point operations through distributivity
- example: d[i] = a[i] * b[i] + a[i] * c[i]; ->

d[i] = a[i] * (b[i] + c[i]);

* eliminate floating-point operations through associativity
- example:d[i]=(a[i] * b[i]) * c[i]; y[i] = (x[i] * a[i]) * b[i];->

temp = a[i] * b[i]; d[i] = temp * c[i]; y[i] = x[i] * temp;

* use trace scheduling to reduce the branch taken frequency
- example: if (likely_condition) f(); else g(); h(); ->
void s() {g(); h();} ... if (!likely_condition) {s();} f(); h();
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AutoSCOPE
* factor out common code into subroutines
- example: ... same_code ... same_code ... ->
void f() {same_code;} ... f() ... f() ...;

* allow inlining only for subroutines with one call site or very short
bodies
- compiler flag: use the "-nolib-inline", "-fno-inline",
"-fno-inline-functions", or "-finline-limit=" (with a small ) compiler
flags

* make subroutines more general and use them more
- example: void f() {statements1; same_code;}

void g() {statements2; same_code;} ->
void fg(int flag) {if (flag) {statements1;} else {statements2;}
same_code;}

* split off cold code into separate subroutines and place them at the
end of the source file
- example: if (unlikely_condition) {lots_of_code} ->
void f() {lots_of_code} ... if (unlikely_condition) f();

* reduce the code size
- compiler flag: use the "-Os" or "-O1" compiler flag
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AutoSCOPE for the loop of RHS function

Loop in function rhs_() (19.4% of the total runtime)
======================================================================

* move loop invariant computations out of loop
- example: loop i {x = x + a * b * c[i];} ->
temp = a * b; loop i {x = x + temp * c[i];}

* lower the loop unroll factor
- example: loop i step 4 {code_i; code_i+1; code_i+2; code_i+3;} ->

loop i step 2 {code_i; code_i+1;}
- compiler flag: use the "-no-unroll-aggressive" compiler flag

236 / 253



Score-P - A Joint Performance
Measurement Run-Time

Infrastructure for Periscope,
Scalasca, TAU and Vampir
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Why a new tool?

Several performance tools co-exist
Different measurement systems and output format
Complementary features and overlapping functionality
Redundant effort for development and maintenance
Limited or expensive interoperability
Complications for user experience, support, training
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Idea

Common infrastructure and effort
Common data formats OTF2 and CUBE4
Sharing ideas and implement faster
No effort for maintenance, testing etc for various tools
Single learning curve
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Score-P Architecture
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Components

Separate, stand-alone packages
Common functionality factored out
Automated builds and tests
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Score-P

Instrumenter scorep
Links application to measurement library
libscorep_(serial|omp|mpi|mpi_omp)
Records time, visits, communication metrics, hardware counters

I Efficient utilization of available memory
I Minimize perturbation/overhead
I Useful for unification
I Access data during runtime

Switch modes (tracing, profiling, online) without recompilation
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Score-P Instrumentation
Instrument
mpicc -c foo.c -> scorep mpicc -c foo.c

Help
% scorep --help

...
--user Enables manual user instrumentation.
--nouser Disables manual user instrumentation. Is

disabled by default.
--pdt Enables source code instrumentation with PDT

using the TAU instrumentor.
It will automatically enable the user
instrumentation and disable compiler
instrumentation.

---

Instrument with PDT
scorep --pdt mpicc -c foo.c

Automatic detect serial/OpenMP/MPI/hybrid
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Score-P Run-Time Recording
Uncomment the appropriate MPIF77 command in config/make.def of
NAS benchmarks
MPIF77 = scorep mpif77
Customize via environment variables

Environment Variable Default Description
SCOREP_ENABLE_PROFILING 1 Setting to 0 turns off profiling
SCOREP_ENABLE_TRACING 1 Setting to 0 turns off tracing
SCOREP_TOTAL_MEMORY 1200k Total memory in bytes for the

measurement system excluding
trace memory

SCOREP_EXPERIMENT_DIRECTORY ”“ Name of the experiment directory
SCOREP_MPI_ENABLE_GROUPS DEFAULT The names of the function groups

which are measured (CG, P2P...)
SCOREP_SELECTIVE_CONFIG_FILE ”“ A file name which configures se-

lective tracing
SCOREP_FILTER_FILE ”“ A file name which contain the fil-

ter rules
SCOREP_PROFILING_MAX_CALLPATH_DEPTH 30 Maximum depth of the calltree
SCOREP_PROFILING_FORMAT DEFAULT Profile output format (NONE,

TAU_SNAPSHOT, CUBE4, DE-
FAULT)

SCOREP_METRIC_PAPI ”“ PAPI metric names

It supports selective tracing
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The Open Trace Format Version 2 (OTF2)

Event trace data format
I Event record types +

definition record types

Multi-file format
I Anchor file
I Global and local

definitions + mappings
I Event files

OTF2 API
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Re-design OTF2

One process/thread per file
Memory event trace buffer becomes part of trace format
No re-write for unification, mapping tables
Forward/Backward reading
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Selective Tracing

Score-P allows to disable the instrumentation on specific parts of the
code (SCOREP_RECORDING_OFF/ON)
It allows online access for handling the data on the fly for profiling mode
Parameters profiling, we can split-up the callpath for executions of
different parameter values (INT64, UINT64, String)
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Future features

Scalability to maximum available CPU core count
Support for sampling, binary instrumentation
Support for new architectures
Allow experimental versions of new features or research
Future integration in Open MPI releases
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Accuracy: SkaMPI vs TAU vs Score-P

Score-P provides less overhead compared to TAU
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Accuracy: Score-P and PAPI

Comparing the tracing of Score-P with and without PAPI and visualize the
traces through Paje format. PAPI measurement adds some overhead
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Accuracy: Hardware counters

Apply selective instrumentation for capturing only MPI events with PAPI
without any info for the computation

BEGIN_FILE_EXCLUDE_LIST

*
END_FILE_EXCLUDE_LIST

Execution of the LU benchmark, class A and 4 processes on the cluster
bordereau (Grid’5000): 36.24 seconds, 82.36 billions instructions
Without the exclusion: 46.4 seconds, 92.9 billions instructions
12.79% of the instructions caused by the instrumentation tool!
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Accuracy: Scalasca and periodicity data
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Thank you!
Questions?
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