
VisIt Libsim. An in-situ visualisation library
December 2017

Jean M. Favre, CSCS

Outline

 Motivations

 In-situ visualization

 In-situ processing strategies
 VisIt’s libsim library
 Enable visualization in a running simulation
 Source code instrumentation

Facts

 Parallel simulations are now ubiquitous

 The mesh size and number of timesteps are of unprecedented size

 The traditional post-processing model “compute-store-analyze”
does not scale

Consequences:
 Datasets are often under-sampled
 Many time steps are never archived
 It takes a supercomputer to re-load and visualize

supercomputer data

Motivations Statements

Having a real-time monitoring capability on all supercomputing resources is
essential to avoid wasting valuable time on computational resources…

Scientists have needs for both run-time monitoring and for coupling of those
codes...with other codes

There are great opportunities to do better science (analysis) when access to
the full spatio-temporal resolution data is possible.

4

History has shown how compute and I/O capacities are unbalanced

And
the

future
is
no

different
!!!

Data courtesy A. Geist (ORNL)

Typical situation…

When there is too much data…

Several strategies are available to mitigate the data problem:
• read less data:

• multi-resolution,
• on-demand streaming,

• out-of-core, etc...

• Do no read data from disk but from memory:
in-situ visualization

in-situ (parallel) visualization

Instrument parallel simulations to:
 Eliminate I/O to and from disks
 Use all grid data with or without ghost-cells
 Have access to all time steps, all variables
 Use the available parallel compute nodes
 Maximize features and capabilities
 Minimize code modifications to simulations
 Minimize impact to simulation codes
 Allow users to start an in-situ session on demand instead of deciding before running a

simulation
 Debugging
 Computational steering

 scalable vis infrastructure accessible in situ
 VisIt/Libsim
 Paraview/Catalyst

 ADIOS: I/O library approach

 SENSEI: generic in situ interface

9

Existing in-situ approaches

ADIOS and GLEAN both provide tools for in situ I/O and some analysis
 They allow simulations to adopt in situ techniques by leveraging their advanced I/O

infrastructures that enable co-analysis pipelines rather than changing the simulator.
 The non-intrusive integration provides resilience to third party library bugs and possible

jitter in the simulation.

ParaView and VisIt both provide tools for in situ analysis and visualization
 Catalyst can be tightly or loosely linked to a simulation, allowing the simulation to share

data with Catalyst for analysis and visualization.
 Similar capabilities are available within VisIt with the Libsim library.
 Catalyst-Live, Libsim, and ADIOS enable the opposite flow of information, sending data

from the client to the simulation, enabling the possibility of in situ and/or
monitoring/simulation steering.

(text source SENSEI SC17 tutorial)

10

in-situ Processing Strategies

In Situ Strategy Description Negative Aspects

Loosely coupled
a.k.a.

“Concurrent
processing”

Visualization and
analysis run on
concurrent resources
and access data over
network

1) Data movement costs
2) Requires separate resources

Tightly coupled
a.k.a.

“Co-processing”

Visualization and
analysis have direct
access to memory of
simulation code

1) Very memory constrained
2) Large potential impact

(performance, crashes)

Hybrid Data is reduced in a
tightly coupled setting
and sent to a
concurrent resource

1) Complex
2) Shares negative aspects (to

a lesser extent) of others

Loosely Coupled in-situ Processing

 I/O layer stages data into
secondary memory buffers,
possibly on other compute
nodes

 Visualization applications access
the buffers and obtain data

 Separates visualization
processing from simulation
processing

 Copies and moves data

Simulation

data

Memory buffer

data

I/O Layer

Possible network boundary

Visualization tool

read

Tightly Coupled Custom in-situ Processing

 Custom visualization routines are
developed specifically for the
simulation and are called as
subroutines
 Create best visual

representation
 Optimized for data layout

 Tendency to concentrate on very
specific visualization scenarios

 Write once, use once

Simulation

data

Visualization
Routines

images, etc

Tightly Coupled General in-situ Processing

 Simulation uses data adapter
layer to make data suitable for
general purpose visualization
library

 Rich feature set can be called
by the simulation

 Operate directly on the
simulation’s data arrays when
possible

 Write once, use many times
images, etc

Simulation

data

Data Adapter

General
Visualization

Library

Libsim in VisIt

Users select simulations to
open as if they were files

The Simulation’s
window shows

meta-data about
the running code

Control commands
exposed by the code

are available here

All of VisIt’s existing
functionality is accessible

Visualization Tool Architecture

 Clients runs locally and display
results computed on the server

ne
tw

or
k

co
nn

ec
tio

n

Vis
Server

Vis
ServerM

P
I

Data
Plugin

Data
Plugin

Data
Plugin

Parallel ClusterLocal VisIt Clients Files

Da
ta

Da
ta

Da
taVis

Server

Vis Server

Filter

Filter

Filter

Data
Visualization

Pipeline

Server runs remotely in parallel,
handling data processing for client

• Data processed in data flow
networks

• Filters in data flow networks
can be implemented as plug-
ins

Li
bs

im
R

un
tim

e

Coupling of Simulations and VisIt

Libsim is a VisIt library that simulations use to enable couplings
between simulations and VisIt. Not a special package. It is an
integral part of VisIt.

Simulation

Libsim
Front
End

Data
Access
Code

Libsim
Front End

Data
Access
CodeData

Source

Filter

Filter

A Simulation using Libsim

 Front-end library lets VisIt connect

 Runtime library processes the simulation’s data

 Runtime library obtains data on demand through user-supplied
Data Access Code callback functions

ne
tw

or
k

co
nn

ec
tio

n Libsim
Runtime

M
P

I

Front
end

Parallel ClusterLocal VisIt Clients

Da
ta

Da
ta

Da
ta

Simulation Code

Simulation Code

Simulation Code

Data
Access
Code

Libsim
Runtime

Front
end

Data
Access
Code

Libsim
Runtime

Front
end

Data
Access
Code

In Situ Processing Workflow

1. The simulation code launches and starts execution

2. The simulation regularly checks for connection attempts
from visualization tool

3. The visualization tool connects to the visualization

4. The simulation provides a description of its meshes and
data types

5. Visualization operations are handled via Libsim and
result in data requests to the simulation

Instrumenting a Simulation

Additions to the source code are usually minimal, and follow three incremental
steps:

Initialize Libsim
and alter the
simulation’s
main iterative
loop to listen
for connections
from VisIt.

Create data
access
callback
functions so
simulation can
share data with
Libsim.

Add control
functions that
let VisIt steer
the simulation.

Connection to the
visualization library
is optional

Execution is step-
by-step or in
continuous mode

Live connection
can be closed and
re-opened at later
time

Exit

Initialize

Check for
convergence

Solve next
time-step

Instrumenting Application’s flow diagram (before and
after)

VisIt in-the-loop

Libsim opens a socket and
writes out connection
parameters

VisItDetectInput checks for:
 Connection request
 VisIt commands
 Console input

Exit

Initialize

Check for
convergence

Solve next
time-step

Visualization
requests

complete VisIt
connection

process
commands

runs console
input

VisIt Detect
Input

Data-access callbacks

VisIt requests data on demand through data access
callback functions
 Return actual pointers to your simulation’s data

(nearly zero-copy)
 Return alternate representation that Libsim can free
 Written in C, C++, Fortran, Python

Sharing Data Example

// Example Data Access Callback
visit_handle
GetVariable(int domain, char *name,
void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;
SimData_t *sim = (SimData_t *)cbdata;
if(strcmp(name, "pressure") == 0)
{

VisIt_VariableData_alloc(&h);
VisIt_VariableData_setDataD(h,

VISIT_OWNER_SIM,
1, sim->nx*sim->ny,
sim->pressure);

}
return h;

}

SimData_t
Nx=6
Ny=8
pressure

Pass simulation
buffer to Libsim

Simulation Buffer

Supported Data Model

 Mesh Types
• Structured meshes
• Point meshes
• CSG meshes
• AMR meshes
• Unstructured & Polyhedral meshes

 Materials
 Species

 Variables
• 1 to N components
• Zonal and Nodal

Adding Control Functions

 The simulation provides
commands to which it will
respond

 Commands generate user
interface controls in
Simulations Window

Custom User Interfaces

Simulation can provide UI description
for more advanced computational
steering

Advantages compared to saving files

 The greatest bottleneck (disk I/O) is eliminated
 Not restricted by limitations of any file format
 No need to reconstruct ghost-cells from archived data
 All time steps are potentially accessible
 All problem variables can be visualized
 Internal data arrays can be exposed or used
 Parallel compute nodes are already allocated

 The simulation can watch for a particular event and trigger the
update of the VisIt plots

Libsim enables flexible workflows

Interactive exploration:
 Use the VisIt client to connect to your simulation and explore
 Simulations are like any other data source

Batch mode data extracts:
 Create automated routines to generate data in batch
 Program directly using Libsim
 Use VisIt session files

(text source SENSEI SC17 tutorial)
29

Libsim resources

Information about instrumenting a simulation can be found here:

 Getting Data Into VisIt

 (https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf)

 VisIt Example Simulations

 (http://visit.ilight.com/trunk/src/tools/DataManualExamples/Simulations)

 VisIt Wiki (http://www.visitusers.org)

 VisIt Email List (visit-users@email.ornl.gov)

30

	VisIt Libsim. An in-situ visualisation library
	Outline
	Facts	
	Motivations Statements
	History has shown how compute and I/O capacities are unbalanced
	Typical situation…
	When there is too much data…
	in-situ (parallel) visualization
	Slide Number 9
	Existing in-situ approaches
	in-situ Processing Strategies
	Loosely Coupled in-situ Processing
	Tightly Coupled Custom in-situ Processing
	Tightly Coupled General in-situ Processing
	Libsim in VisIt
	Visualization Tool Architecture
	Coupling of Simulations and VisIt
	A Simulation using Libsim
	In Situ Processing Workflow
	Instrumenting a Simulation
	Slide Number 21
	VisIt in-the-loop
	Data-access callbacks
	Sharing Data Example
	Supported Data Model
	Adding Control Functions
	Custom User Interfaces
	Advantages compared to saving files
	Libsim enables flexible workflows
	Libsim resources

