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• Chair for computer architecture at CS faculty, TUM

– how to exploit current & future (HPC) systems (multicore, accelerators)

– programming models, performance analysis tools, application tuning

• PhD on load balancing of commercial car crash code (MPI) 2003

• Interested especially in cache analysis and optimization

– cache simulation: Callgrind (using Valgrind)

– applied to 2D/3D stencil codes

– recently extended to multicore (new bottlenecks, new benefits)

My Background
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• Why should you care about memory performance?

• Most (HPC) applications often do memory accesses

• Good vs. bad use of the memory hierarchy can be ~ factor 100 (!)

• Example: modern processor with 3GHz clock rate, 2 sockets

– latency to remote socket ~ 100 ns: 300 clock ticks

– bandwidth (1 core) ~ 15 GB/s

– compare to L1 access: latency 2-3 ticks, bandwidth ~150GB/s

• Bad memory performance easily can dominate performance

(better memory performance also will speed up parallel code)

Topic of this Morning: Bottleneck Memory
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Still getting more important

• compute power on one chip still increases

• main memory latency will stay (off-chip distance)

• bandwidth increases, but not as much as compute power

 Memory Wall (stated already in 1994)

In addition:

• with multi-core, cores share connection to main memory!

Topic of this Morning: Bottleneck Memory
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The Memory Wall
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CPU Peak Performance (clock & cores)
+ 40% / year

Main Memory Performance
+7% / year

Growing
Gap

Access latency to main memory today up to 300 cycles

Assume 2 Flops/clock ticks 600 Flops wasted while waiting for
one main memory access!
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• Further getting more important not only for performance, but

• for problem no.1 in the future: power consumption (Power Wall)

– reason that we have multi-core today

– most significant cost factor for compute centers in the future

– users not to be charged by hours, but by energy consumption?

• Comparison computation vs. memory access [Dongarra, PPAM 2011]

– DP FMA: 100 pJ (today)  10 pJ (estimation 2018)

– DP Read DRAM: 4800 pJ (today)  1920 pJ (estimation 2018)

• today: for 1 memory access saved, can do 48 FMAs more

2018: 192 FMAs more

• solution (?): do redundant calculation to avoid memory access

Topic of this Morning: Bottleneck Memory
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The Memory Hierarchy

Caches: Why & How do they work?

Bad Memory Access Patterns

How to not exploit Caches

Cache Optimization Strategies

How to exploit Caches even better

Outline: Part 1 

Weidendorfer: Memory Access Analysis and Optimization 7



Technische Universität München

Cache Analysis

Measuring on real Hardware vs. Simulation

Cache Analysis Tools

Case Studies

Hands-on

Outline: Part 2 
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Two facts of modern computer systems

• processor cores are quite fast

• main memory is quite slow

Why? Different design goals

• everybody wants a fast processor

• everybody wants large amounts of cheap memory

Why is this not a contradiction? There is a solution to bridge the gap:

• a hierarchy of buffers between processor and main memory

• often effective, and gives seemingly fast and large memory

The Memory Hierarchy
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We can build very fast memory (for a processor), but

• it has to be small (only small number of cascading gates)

– tradeoff: buffer size vs. buffer speed

• it has to be near (where data is to be used)

– on-chip, not much space around execution units

• it will be quite expensive (for its size)

– SRAM needs a lot more energy and space than DRAM

 use fast memory only for data most relevant to performance

 if less relevant, we can afford slower access, allowing more space

 this works especially well if “most relevant data” fits into fast buffer

Solution: The Memory Hierarchy
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Solution: The Memory Hierarchy
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Registers

Fast Buffer

CPU-local Main Memory

Slower Buffer

Remote Main Memory
(attached to other CPUs)

Even more remote Memory
(on I/O devices, ...)

on-chip

off-chip

Size Latency Bandwidth

300 B 1

32 kB 3 100 GB/s

4 MB 20 30 GB/s

4 GB 200 15 GB/s

4 GB 300 10 GB/s

1 TB > 107 0,2 GB/s
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Programmers want memory to be a flat space

• registers not visible, used by compilers

• on-chip buffers are

– not explicitly accessed, but automatically filled from lower levels

– indexed by main memory address

– hold copies of blocks of main memory

not visible to programmers: caches

• transparent remote memory access provided by hardware

• extension on I/O devices by MMU & OS

Let’s concentrate on Processor Caches…

Solution: The Memory Hierarchy
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Why are Caches effective? Because typical programs

• often access same memory cells repeatedly

– temporal locality  good to keep recent accessed data in cache

• often access memory cells near recent accesses

– spatial locality  good to work on blocks of nearside data (cache line)

“Principle of Locality”

So what’s about the Memory Wall?

• the degree of “locality” depends on the application

• at same locality, the widening gap between processor and memory  

performance reduces cache effectiveness

Solution: Processor Caches

Weidendorfer: Memory Access Analysis and Optimization 13



Technische Universität München

– memory latency: 3

– cache latency: 1

– without cache: 30

– cache exploiting

temporal locality: 22

(6 misses, 4 hits)

– cache exploiting

temporal and

spatial locality: 16

(3 misses, 7 hits)

Example: Sequence with 10 Accesses
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• Cache holds copies of memory blocks

– space for one copy called “cache line”  Cache Line Size

– transfers from/to main memory always at line size granularity

• Cache has restricted size: Cache Size

– line size 2, cache size 6 (= 3 lines           )

– line size 2, cache size 4 (=2 lines        )

• Which copy to evict for new copy

– Replacement Policy

– Typically: Evict Least Recently Used (LRU)

Basic Cache Properties (1)
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• every cache line knows the memory address it has a copy of („tag“)

• comparing all tags at every access expensive (space & energy)

• better: reduce number of comparisons per access

– group cache lines into sets

– a given address can only

be stored into a given set

– lines per set: Associativity

• example: 2 lines (       ) , sequence 1/3/1/3/2/4/2/4

Basic Cache Properties (2)
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The “Principle of Locality” makes caches effective

• How to improve on that?

• Try to further reduce misses!

Options

• increase cache line size!

– can reduce cache effectiveness, if not all bytes are accessed

• predict future accesses (hardware prefetcher), load before use

– example: stride detectors (more effective if keyed by instruction)

– allows “burst accesses” with higher netto bandwidth

– only works if bandwidth not exploited anyway (demand vs. speculative)

– can increase misses if prefetching is too aggressive

Solution: Processor Caches
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Principle of Locality often holds true across multiple threads

• example: threads need same vectors/matrices

• caches shared among cores can be beneficial

• sharing allows threads to prefetch data for each other

However, if threads work on different data…

• example: disjunct partitioning of data among threads

• threads compete for space, evict data of each other

• trade-off: only use cache sharing on largerst on-chip buffer

The Memory Hierarchy on Multi-Core
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Typical example (modern Intel / AMD processors)

Why are there 3 levels?

• cache sharing increases on-chip bandwidth demands by cores

• L1 is very small to be very fast  still lots of references to L2

• private L2 caches reduce bandwidth demands for shared L3

The Memory Hierarchy on Multi-Core

Weidendorfer: Memory Access Analysis and Optimization 19

L1

Main Memory

L2

L1

Main Memory

L2

L3

L1

L2



Technische Universität München

The Cache Coherence Problem

• suppose 2 processors/cores with private caches at same level

• P1 reads a memory block X

• P2 writes to the block X

• P1 again reads from block X (which now is invalid!)

A strategy is needed to keep caches coherent

• writing to X by P2 needs to invalidate or update copy of X in P1

• cache coherence protocol

• all current multi-socket/-core systems have fully automatic cache 

coherence in hardware (today already a significant overhead!)

Caches and Multi-Processor Systems
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The Memory Hierarchy

Caches: Why & How do they work?

Bad Memory Access Patterns

How to not exploit Caches

Cache Optimization Strategies

How to exploit Caches even better

Outline: Part 1 
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How to characterize good memory access behavior?

Cache Hit Ratio

• percentage of accesses which was served by the cache

• good ratio: > 97%

Symptoms of bad memory access: Cache Misses

Let’s assume that we can not change the hardware as 

countermeasure for cache misses (e.g. enlarging cache size)

Memory Access Behavior
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Classification:

• cold / compulsory miss

– first time a memory block was accessed

• capacity miss

– recent copy was evicted because of too small cache size

• conflict miss

– recent copy was evicted because of too low associativity

• concurrency miss

– recent copy was evicted because of invalidation by cache coherence 

protocol

• prefetch inaccuracy miss

– recent copy was evicted because of aggressive/imprecise prefetching

Memory Access Behavior: Cache Misses
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Lots of cold misses

• each memory block only accessed once, and

• prefetching not effective because accesses are not predictable or 

bandwidth is fully used

• usually not important, as programs access data multiple times

• can become relevant if there are lots of context switches (when 

multiple processes synchronize very often)

– L1 gets flushed because virtual addresses get invalid

Bad Memory Access Behavior (1)
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Lots of capacity misses

• blocks are only accessed again after eviction due to limited size

– number of other blocks accessed in-between (= reuse distance) > 

number of cache lines

– example: sequential access to data structure larger than cache size

• and prefetching not effective

Countermeasures

• reduce reuse distance of accesses = increase temporal locality

• improve utilization inside cache lines = increase spatial locality

• do not share cache among threads accessing different data

• increase predictability of memory accesses

Bad Memory Access Behavior (2)
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Lots of conflict misses

• blocks are only accessed again after eviction due to limited set size

• example:

– matrix where same column in multiple rows map to same set

– we do a column-wise sweep 

Bad Memory Access Behavior (3)

Weidendorfer: Memory Access Analysis and Optimization 26
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Lots of conflict misses

• blocks are only accessed again after eviction due to limited set size

Countermeasures

• set sizes are similar to cache sizes: see last slide…

• make successive accesses cross multiple sets

Bad Memory Access Behavior (3)
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Lots of concurrency misses

• lots of conflicting accesses to same memory blocks by multiple 

processors/cores, which use private caches

– “conflicting access”: at least one processor is writing

Two variants: same block is used

• because processors access same data

• even though different data are accessed, the data resides in same 

block (= false sharing)

– example: threads often write to nearside data

(e.g. using OpenMP dynamic scheduling)

Bad Memory Access Behavior (4)
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Lots of concurrency misses

• lots of conflicting accesses to same memory blocks by multiple 

processors/cores, which use private caches

Countermeasures

• reduce frequency of accesses to same block by multiple threads

• move data structures such that data accessed by different threads 

reside on their own cache lines

• place threads to use a shared cache

Bad Memory Access Behavior (4)
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Lots of prefetch inaccuracy misses

• much useful data gets evicted due to misleading access patterns

• example: prefetchers typically “detect” stride pattern after 3-5 

regular accesses, prefetching with distance 3-5

– frequent sequential accesses to very small ranges (5-10 elements) of 

data structures

Countermeasures

• use longer access sequences with strides

• change data structure if an access sequence accidently looks like a 

stride access

Bad Memory Access Behavior (5)
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Classifications:

• kind of misses

• each cache miss needs another line to be evicted:

is the previous line modified (= dirty) or not?

– yes: needs write-back to memory

– increases memory access latency

Memory Access Behavior: Cache Misses
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The Memory Hierarchy

Caches: Why & How do they work?

Bad Memory Access Patterns

How to not exploit Caches

Cache Optimization Strategies

How to exploit Caches even better

Outline: Part 1 
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The Principle of Locality is not enough...
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Reasons for Performance Loss for SPEC2000
[Beyls/Hollander, ICCS 2004]
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Always use a performance analysis tool before doing optimizations:

How much time is wasted where because of cache misses?

1. Choose the best algorithm

2. Use efficient libraries

3. Find good compiler and options (“-O3”, “-fno-alias” ...)

4. Reorder memory accesses

5. Use suitable data layout

6. Prefetch data

Warning: Conflict and capacity misses are not easy to distinguish...

Basic efficiency guidelines

Weidendorfer: Memory Access Analysis and Optimization 34
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• Blocking: make arrays fit into a cache

Cache Optimization Strategies: Reordering Accesses
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• Blocking: make arrays fit into a cache

• Blocking in multiple dimensions (example: 2D)

Cache Optimization Strategies: Reordering Accesses
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• Blocking: make arrays fit into a cache

• Blocking in multiple dimensions (example: 2D)

• Nested blocking: tune to multiple cache levels

– can be done recursively

according to a space filling curve 

– example: Morton curve

(without “jumps”: Hilbert, Peano…)

– cache-oblivious orderings/algorithms

(= automatically fit to varying levels

and sizes using the same code)

Cache Optimization Strategies: Reordering Accesses

Weidendorfer: Memory Access Analysis and Optimization 37
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• Extreme blocking with size 1: Interweaving

– combined with blocking in other dimenions, results in pipeline patterns

– On multi-core: consecutive iterations on cores with shared cache

• Block Skewing:

Change traversal order over non-rectangular shapes

• For all reorderings: preserve data dependencies of algorithm !

Cache Optimization Strategies: Reordering Accesses
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Strive for best spatial locality

• use compact data structures

(arrays are almost always better than linked lists!)

• data accessed at the same time should be packed together

• avoid putting frequent and rarely used data packed together

• object-oriented programming

– try to avoid indirections

– bad: frequent access of only one field of a huge number of objects

– use proxy objects, and structs of arrays instead of arrays of structs

• best layout can change between different program phases

– do format conversion if accesses can become more cache friendly

– (also can be important to allow for vectorization)

Cache Optimization Strategies: Suitable Data Layout
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Allow hardware prefetcher to help loading data as much as possible

• make sequence of memory accesses predictable

– prefetchers can detect multiple streams at the same time (>10) 

• arrange your data accordingly in memory

• avoid non-predictable, random access sequences

– pointer-based data structures without control on allocation of nodes

– hash tables accesses

Software controlled prefetching (difficult !)

• switch between block prefetching & computation phases

• do prefetching in another thread / core („helper thread“)

Cache Optimization Strategies: Prefetching
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Reduce reuse distance of accesses = increase temporal locality

Strategy:

• blocking

Effectiveness can be seen by

• reduced number of misses

• in reuse distance histogram

(needs cache simulator)

Countermeasures for Capacity Misses
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Improve utilization inside cache lines = increase spatial locality

Strategy:

• improve data layout

Effectiveness can be seen by

• reduced number of misses

• spatial loss metric (needs cache simulator)

– counts number of bytes fetched to a given cache level but never 

actually used before evicted again

• spatial access homogenity (needs cache simulator)

– variance among number of accesses to bytes inside of a cache line

Countermeasures for Capacity Misses
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Do not share cache among threads accessing different data

Strategy:

• explicitly assign threads to cores

• “sched_setaffinity” (automatic system-level tool: autopin)

Effectiveness can be seen by

• reduced number of misses

Countermeasures for Capacity Misses
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Increase predictability of memory accesses

Strategy:

• improve data layout

• reorder accesses

Effectiveness can be seen by

• reduced number of misses

• performance counter for hardware prefetcher

• run cache simulation with/without prefetcher simulation

Countermeasures for Capacity Misses
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Make successive accesses cross multiple cache sets

Strategy:

• change data layout by Padding

• reorder accesses

Effectiveness can be seen by

• reduced number of misses

Countermeasures for Conflict Misses
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Reduce frequency of accesses to same block by multiple threads

Strategy:

• for true data sharing: do reductions by partial results per thread

• for false sharing (reduce frequency to zero = data accessed by 

different threads reside on their own cache lines)

– change data layout by padding (always possible)

– change scheduling (e.g. increase OpenMP chunk size)

Effectiveness can be seen by

• reduced number of concurrency misses (there is a perf. counter)

Countermeasures for Concurrency Misses
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Only general rule:

• Try to avoid writing if not needed

Sieve of Eratosthenes:

~ 2x faster (!): 

Countermeasures for Misses triggering Write-Back
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isPrim[*] = 1;
for(i=2; i<n/2; i++)
if (isPrim[i] == 1)

for(j=2*i; i<n; j+=i)
isPrim[j] = 0;

isPrim[*] = 1;
for(i=2; i<n/2; i++)
if (isPrim[i] == 1)

for(j=2*i; i<n; j+=i)
if (isPrim[j]==1)

isPrim[j] = 0;
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Cache Analysis

Measuring on real Hardware vs. Simulation

Cache Analysis Tools

Case Studies

Hands-on

Outline: Part 2 
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Count occurrences of events

• resource exploitation is related to events

• SW-related: function call, OS scheduling, ...

• HW-related: FLOP executed, memory access, cache miss, time 

spent for an activity (like running an instruction)

Relate events to source code

• find code regions where most time is spent

• check for improvement after changes

• „Profile“: histogram of events happening at given code positions

• inclusive vs. exclusive cost

Sequential Performance Analysis Tools
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Where?

• on real hardware

– needs sensors for interesting events

– for low overhead: hardware support for event counting

– difficult to understand because of unknown micro-architecture, 

overlapping and asynchronous execution

• using machine model

– events generated by a simulation of a (simplified) hardware model

– no measurement overhead: allows for sophisticated online processing

– simple models relatively easy to understand

Both methods have pro & contra, but reality matters in the end

How to measure Events (1)
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SW-related

• instrumentation  (= insertion of measurement code)

– into OS / application, manual/automatic, on source/binary level

– on real HW: always incurs overhead which is difficult to estimate

HW-related

• read Hardware Performance Counters

– gives exact event counts for code ranges

– needs instrumentation

• statistical: Sampling

– event distribution over code approximated by every N-th event

– HW notifies only about every N-th event  Influence tunable by N

How to measure Events (2)
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Cache Analysis

Measuring on real Hardware vs. Simulation

Cache Analysis Tools

Case Studies

Hands-on

Outline: Part 2 
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• GProf

– Instrumentation by compiler for call relationships & call counts

– Statistical time sampling using timers

– Pro: available almost everywhere (gcc: -pg)

– Contra: recompilation, measurement overhead, heuristic

• Intel VTune (Sampling mode) / Linux Perf (>2.6.31)

– Sampling using hardware performance counters, no instrumentation

– Pro: minimal overhead, detailed counter analysis possible

– Contra: call relationship can not be collected

(this is not about call stack sampling: provides better context…)

• Callgrind: machine model simulation

Analysis Tools
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Based on Valgrind

• runtime instrumentation infrastructure (no recompilation needed)

• dynamic binary translation of user-level processes

• Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM

• correctness checking & profiling tools on top

– “memcheck”: accessibility/validity of memory accesses

– “helgrind” / ”drd”: race detection on multithreaded code

– “cachegrind”/”callgrind”: cache & branch prediction simulation

– “massif”: memory profiling

• Open source (GPL), www.valgrind.org

Callgrind: Basic Features
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Measurement

• profiling via machine simulation (simple cache model)

• instruments memory accesses to feed cache simulator

• hook into call/return instructions, thread switches, signal handlers

• instruments  (conditional)  jumps for CFG inside of functions

Presentation of results

• callgrind_annotate

• {Q,K}Cachegrind

Callgrind: Basic Features
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Usage of Valgrind

– driven only by user-level instructions of one process

– slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)

• “fast-forward mode”: 2-3x

 allows detailed (mostly reproducable) observation

 does not need root access / can not crash machine

Cache model

– “not reality”: synchronous 2-level inclusive cache hierarchy

(size/associativity taken from real machine, always including LLC)

 easy to understand / reconstruct for user

 reproducible results independent on real machine load

 derived optimizations applicable for most architectures

Pro & Contra (i.e. Simulation vs. Real Measurement)
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• valgrind –tool=callgrind [callgrind options] yourprogram args

• cache simulator: --cache-sim=yes

• branch prediction simulation (since VG 3.6): --branch-sim=yes

• enable for machine code annotation: --dump-instr=yes

• start in “fast-forward”: --instr-atstart=yes

– switch on event collection: callgrind_control –i on / Macro

• spontaneous dump: callgrind_control –d [dump identification]

• current backtrace of threads (interactive): callgrind_control –b

• separate dumps per thread: --separate-threads=yes

• cache line utilization: --cacheuse=yes

• enable prefetcher simulation: --simulate-hwpref=yes

• jump-tracing in functions (CFG): --collect-jumps=yes

Callgrind: Usage
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• open source, GPL, kcachegrind.sf.net

• included with KDE3 & KDE4

Visualization of

– call relationship of functions (callers, callees, call graph)

– exclusive/Inclusive cost metrics of functions

• grouping according to ELF object / source file / C++ class

– source/assembly annotation: costs + CFG

– arbitrary events counts + specification of derived events

Callgrind support (file format, events of cache model)

KCachegrind: Features
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{k,q}cachegrind callgrind.out.<pid>

• left: “Dockables”
– list of function groups

groups according to

– library (ELF object)

– source

– class (C++)

– list of functions with

– inclusive

– exclusive costs

• right: visualization panes

KCachegrind: Usage
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Visualization panes for selected function

• List of event types

• List of callers/callees

• Treemap visualization

• Call Graph

• Source annotation

• Assemly annotation

Weidendorfer: Memory Access Analysis and Optimization 60



Technische Universität München

Call-graph Context Visualization
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Cache Analysis

Measuring on real Hardware vs. Simulation

Cache Analysis Tools

Case Studies

Hands-on

Outline: Part 2 
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• Get ready for hands-on

– matrix multiplication

– 2D relaxation

Case Studies
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Matrix Multiplication

• Kernel for C = A * B

– Side length N  N3 multiplications + N3 additions

BC A= *

i j

k

i

k j

c[k][i] = a[k][j] * b[j][i]
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Matrix Multiplication

• Kernel for C = A * B

– 3 nested loops (i,j,k): What is the best index order? Why?

– blocking for all 3 indexes, block size B, N multiple of B

Weidendorfer: Memory Access Analysis and Optimization

for(i=0;i<N;i++)
for(j=0;j<N;j++)
for(k=0;k<N;k++)
c[k][i] = a[k][j] * b[j][i]

for(i=0;i<N;i+=B)
for(j=0;j<N;j+=B)
for(k=0;k<N;k+=B)
for(ii=i;ii<i+B;ii++)
for(jj=j;jj<j+B;jj++)
for(kk=k;kk<k+B;kk++)
c[k+kk][i+ii] =
a[k+kk][j+jj] * b[j+jj][i+ii]
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Optimization: Interleave 2 iterations

– iteration 1 for row 1

– iteration 1 for row 2, iteration 2 for row 1

– iteration 1 for row 3, iteration 2 for row 2

– …

Iterative Solver for PDEs: 2D Jacobi Relaxation
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Example: Poisson

One iteration:

for(i=1;i<N-1;i++)
for(j=1;j<N-1;j++)
u2[i][j] = ( u[i-1][j] +

u[i][j-1] +
u[i+1][j] +
u[i][j+1]   )/4.0;

u[*][*] = u2[*][*];
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2D Jacobi: Parallel Version

• Base version: 1 layer of ghost cells

– update: average of 4 neighbours, 4 Flops/update 

– bandwidth requirement: 16 bytes/update

– memory-bound: 2 cores already occupy bus

– on SuperMUC: 7 GFlop/s per node (2 sockets)

Core Core Core

Cache

Memory
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2D Jacobi: Cache Optimizations

• Spatial blocking of n iterations: n ghost layers

•

• blocks fit into cache: update of inner borders

reduced BW to memory better scalability

– MPI: duplication of ghost layers, redundant computation

– hybrid: less memory/BW, no redundant computation,

enables cache-obliviousness (recursive bisection)

Core Core Core

Cache

Memory

1 23

3
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2D Jacobi: Cache Optimizations

• Wavefront: similar to blocking, use shared cache

•

within multicore, may be combined with blk.

– allows larger blocks, less border updates

– not possible among MPI processes

(matrix needs to be streamed trough cores)

C1 C2 C3

Cache

Memory

C1
C1

C1

C2
C2
C3
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Outline: Part 2 

Cache Analysis

Measuring on real Hardware vs. Simulation

Cache Analysis Tools

Case Studies

Hands-on
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• Run valgrind with mpirun (bt-mz: example from NAS)

export OMP_NUM_THREADS=4

mpirun -np 4 valgrind --tool=callgrind --cache-sim=yes \

--separate-threads=yes ./bt-mz_B.4

• load all profile dumps at once:

– run in new directory, “qcachegrind callgrind.out”

How to run with MPI
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Getting started / Matrix Multiplication / Jacobi

• Try it out yourself (on intelnode)

“cp -r /srv/app/kcachegrind/kcg-examples .”

example exercises are in “exercises.txt”

• What happens in „/bin/ls“ ?

– valgrind --tool=callgrind ls /usr/bin

– qcachegrind

– What function takes most instruction executions? Purpose?

– Where is the main function?

– Now run with cache simulation: --cache-sim=yes
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Q A&
?

?
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