Introduction a I'arithmétique par intervalles

Nathalie Revol et Philippe Théveny
INRIA et ENS de Lyon
LIP, ENS de Lyon
Université de Lyon

Ecole Précision et Reproductibilité en Calcul Numérique
Fréjus, jeudi 28 mars 2013

Agenda

Introduction

Operations, expressions
Operations
Expressions and functions extensions
Variants: for higher accuracy
Vectors, matrices

Cons and pros
Cons: overestimation, complexity
Pros: contractant iterations, Brouwer's theorem
Applications: Newton, optimization

IEEE 1788
Precision and numerical reproducibility

Conclusions
Bibliography

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:

(or “Thou shalt not lie”):

the exact result (number or set) is contained in the computed
interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.
Initially: introduced to take into account roundoff errors (Moore
1966)

and also uncertainties (on the physical data...).

Later: computations “in the large”, computations with sets.

Interval analysis: develop algorithms for reliable (or verified, or
guaranteed, or certified) computing,

that are suited for interval arithmetic,

i.e. different from the algorithms from classical numerical analysis.

A brief introduction: examples of applications

» control the roundoff errors, cf. computational geometry

» solve several problems with verified solutions: linear and
nonlinear systems of equations and inequalities, constraints
satisfaction, (non/convex, un/constrained) global
optimization, integrate ODEs e.g. particules trajectories. . .

» mathematical proofs: cf. Hales' proof of Kepler's conjecture
or Tucker's proof that Lorenz system has a strange attractor.

Cf. http://www.cs.utep.edu/interval-comp/

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

» 1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

» 1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966
» 1958: Tsunaga, in his MSc thesis in Japanese

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

» 1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

» 1958: Tsunaga, in his MSc thesis in Japanese

» 1956: Warmus

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

» 1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

» 1958: Tsunaga, in his MSc thesis in Japanese

» 1956: Warmus

» 1951: Dwyer, in the specific case of closed intervals

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

» 1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

1958: Tsunaga, in his MSc thesis in Japanese

1956: Warmus

1951: Dwyer, in the specific case of closed intervals

1931: Rosalind Cecil Young in her PhD thesis in Cambridge
(UK) has used some formulas

vV v VY

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

>

vV v VY

1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

1958: Tsunaga, in his MSc thesis in Japanese

1956: Warmus

1951: Dwyer, in the specific case of closed intervals

1931: Rosalind Cecil Young in her PhD thesis in Cambridge
(UK) has used some formulas

1927: Bradis, for positive quantities, in Russian

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

>

vV v VY

1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

1958: Tsunaga, in his MSc thesis in Japanese

1956: Warmus

1951: Dwyer, in the specific case of closed intervals

1931: Rosalind Cecil Young in her PhD thesis in Cambridge
(UK) has used some formulas

» 1927: Bradis, for positive quantities, in Russian

» 1908: Young, for some bounded functions, in Italian

http://www.cs.utep.edu/interval-comp/

Historical remarks
Who invented Interval Arithmetic?

>

vV v VY

1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of 1A in a book in 1966

1958: Tsunaga, in his MSc thesis in Japanese

1956: Warmus

1951: Dwyer, in the specific case of closed intervals

1931: Rosalind Cecil Young in her PhD thesis in Cambridge
(UK) has used some formulas

» 1927: Bradis, for positive quantities, in Russian

» 1908: Young, for some bounded functions, in Italian

» 3rd century BC: Archimedes, to compute an enclosure of 7!

Cf. http://www.cs.utep.edu/interval-comp/, click on Early
papers by Others.

http://www.cs.utep.edu/interval-comp/

Archimedes and an enclosure of 7

Historical remarks

Childhood until the seventies.
Popularization in the 1980, German school (U. Kulisch).

IEEE-754 standard for floating-point arithmetic in 1985:
directed roundings are standardized and available (7).

Since the nineties: interval algorithms.

IEEE-1788 standard for interval arithmetic in 20147
| hope so. ..

nsions

Vectors, matr

Agenda

Operations, expressions
Operations

ctions extensions

Vectors, m

Definitions: operations

xoy=Hull{xoy : xex,y €y}

Arithmetic and algebraic operations: use the monotonicity

[X1+ [y, y] = [x+y.x+7]
b X = . y] = [x-y.x-y]
[x, x] x L,)7] = [mln(x X y,x X ¥, X Xy, X x y), max(ibid.)]
[x, x]? = [min 2), max(x?, XZ)} if 0 & [x, X]
0 ,max x? x2)] otherwise

Expressions and functions extensions

Variants accuracy
Vectors, matrices

Interval arithmetic:
implementation using floating-point arithmetic

Implementation using floating-point arithmetic:
use directed rounding modes (cf. |IEEE 754 standard)

VI2,3] = [vV2, AV3]

Advantage: every result is guaranteed, in the sense that the
exact, unknown result, belongs to the computed interval result.

Expressions and functions extensions

g accuracy
Vectors, matrices

Operations

Algebraic properties: associativity, commutativity hold, some are
lost:

» subtraction is not the inverse of addition, in particular
x —x # [0]

» division is not the inverse of multiplication

» squaring is tighter than multiplication by oneself

» multiplication is only sub-distributive wrt addition

» with floating-point implementation, operations are not
associative either

tions extensions

accuracy
Vectors, matrices

Definitions: comparisons

How to compare two intervals?
how to compare [—1,2] and [0, 3]? or [-1,2] and [0, 1]?

Several approaches:

> use explicit names: CertainlyLess, PossiblylLess
» use trivalued logic (MPFI): a < b returns

» —1 if every element of a is < than every element of b,
» +1 if every element of a is > than every element of b,
» 0 if a and b overlap.

» use many more relation names, cf. IEEE 1788.

Expressions and functions extensions

Variants accuracy
Vectors, matrices

IEEE-1788 standard: comparison relations

» 7 relations: equal (=), subset (C), less than or equal to (<),
precedes or touches (=), interior to, less than (<), precedes

(=<)-

xpressions and functions extensions

Variants: f accuracy
Vectors, matrices

IEEE-1788 standard: comparison relations

» 7 relations: equal (=), subset (C), less than or equal to (<),
precedes or touches (=), interior to, less than (<), precedes

(=<)-

> Interval overlapping relations: before, meets, overlaps,
starts, containedBy, finishes, equal, finishedBy, contains,
startedBy, overlappedBy, metBy, after.

Again, relations defined by conditions on the bounds.

Operations

Variants: for higher accuracy
Vectors, matrices

Agenda

Operations, expressions

Expressions and functions extensions

Operations

Variants: for r accuracy
Vectors, ma

Definitions: function extension

Definition:
an interval extension f of a function f satisfies

Vx, f(x) C f(x), and Vx, f({x})=f({x}).

Elementary functions: again, use the monotony.

exp x = [expx,exp X]
log x = [logx,log X] if x > 0,[—o0,log X] if x>0
sin[7/6,2m/3] [1/2,1]

Operations

Variants higher accuracy
Vectors, matrices

Definitions: function extension

Example: f(x) = x? — x + 1 with x € [-2,1].

[-2,1]> = [-2,1] + 1 =[0,4] + [-1,2] + 1 = [0,7].

Since x> —x+1=x(x—1)+1, we get [-2,1]-([-2,1] -1)+1 =
[-2,1] - [-3,0] + 1 =[-3,6] +1 = [-2,7].

Since x> —x+1 = (x—1/2)2+3/4, we get ([-2,1]-1/2)2+3/4 =
[-5/2,1/2]> + 3/4 = [0,25/4] +3/4 = [3/4,7] = f([-2,1]).

Problem with this definition: infinitely many interval extensions,
syntactic use (instead of semantic).

How to choose the best extension? How to choose a good
one?

Operations

Variants: for higher accuracy
Vectors, matrices

Definitions: function extension

Mean value theorem of order 1 (Taylor expansion of order 1):
VX, Vy, 3y € (x,y) + F(y) = F() +(y = x) - F(§xy)

Interval interpretation:

Vy € x, VX € x, f(y) € f(X) + (y — %) - f'(x)

= f(x) C f(X) + (x — X) - f'(x)

Mean value theorem of order 2 (Taylor expansion of order 2):

)2
VWY, sy € (1) F(y) = FO+(y—0)-F)+ U557 (5x,)
Interval interpretation:

Vy € x, V& € x, F(y) € F(%) + (y — %) - F1(%) + 5L #7/(x)
= F(x) C F(%) + (x — %) - /(%) + EFL . 17(x).

Operations

Variants: for higher accuracy
Vectors, ma

Definitions: function extension
No need to go further:

» it is difficult to compute (automatically) the derivatives of
higher order,
especially for multivariate functions;

» there is no (theoretical) gain in quality.

Theorem:
» for the natural extension f of f, it holds
d(f(x), f(x)) < O(w(x))
» for the first order Taylor extension fr, of f, it holds
d(f(x), fr,(x)) < O(w(x)?)
> getting an order higher than 3 is impossible without the
squaring operation, is difficult even with it. ..

Operations
Expressions and functions ex

Vectors, matrices

Agenda

Operations, expressions

Variants: for higher accuracy

nsions

Operations

ons and functions extensions

Vectors, matrices

Higher precision: extended / arbitrary
Extended precision (double-double, triple-double): (Moler,
Priest, Dekker, Knuth, Shewchuk, Bailey...)
a number is represented as the sum of 2 (or 3 or ...) floating-point
numbers. Do not evaluate the sum using floating-point arithmetic!
Double-double arith. is implemented using IEEE-754 FP arith.

Arbitrary precision: the precision is chosen by the user, the only
limit being the computer’s memory.

Arithmetic is implemented in software, e.g. MPFR (Zimmermann
et al.), MPFI (Revol, Rouillier et al.), (Yamamoto, Kramer et al.).

Tradeoff between accuracy and efficiency (and memory):
double-double: accuracy " x2", < 1 order of magnitude slower
arbitrary prec.: accuracy "o0”, > 1-2 order of magnitude slower
(provided Higham's rule of thumb applies).

Operations
Expressions and functions extensions

Vectors, matrices

Affine arithmetic Comba, Stolfi and Figueiredo — Fluctuat

Definition: each input or computed quantity x is represented by
X =Xp+ Q11 + Q€2 + - -+ + QpEp

where xp, a1, ..., are known real / floating-point numbers,
and €1, €2 ...&, are symbolic variables € [—1, +1].

Example: x € [3,7] is represented by x = 5 + 2¢.

Operations:

(x + Dk owen) + (v + 2ok Brek) = (x +y) + 2okl + Br)ex-
(x+2k aker) X (y+ 22k Brek) = (xxy)+ 2 (xBr+yak)ex+iEr
with £, a new variable.

Roundoff errors: compute §; an upper bound of all roundoff
errors and add it to ;.

Operations
Expressions and functions extensions

Vectors, matrices

Taylor models, polynomial models
Berz, Hoefkens and Makino 1998, Nedialkov, Neher
Principle: represent a function f(x) for x € [-1,1] by a

polynomial part p(x) and a remainder part (a big bin) | such that
Vx € [-1,1], f(x) € p(x) + I.

Operations:
» affine operations: straigthforward,;

» non-affine operations: enclose the nonlinear terms and add
this enclosure to the remainder.

Roundoff errors: determine an upper bound b on the roundoff
errors and add [—b, b| to the remainder.

ns
ons and functions nsions

Agenda

Operations, expressions

Vectors, matrices

tions extensions

accuracy

Definitions: intervals, vectors, matrices

Objects:
» intervals of real numbers = closed connected sets of R

» interval for 7: [3.14159, 3.14160]
» data d measured with an absolute error less than +e:

[d—¢,d+¢€]
> interval vector: components = intervals; also called box
, [0;2] [0;2]
[0;2] <[4 : 5]) ([4 ; 4.5]>
[-6; -5]
— 2 >
-y 4 L _ > -t
0 2

> interval matrix: components = intervals.

Pros: conti nt iterations, B r's theorem

Applications: Newton, optimiz

Agenda

Cons and pros
Cons: overestimation, complexity

Pros: contract: rations, B 's theorem

Applications: n, optimi

Cons: overestimation (1/2)

The result encloses the true result, but it is too large:
overestimation phenomenon.
Two main sources: variable dependency and wrapping effect.

(Loss of) Variable dependency:

x—x={x—y:xexyext#{x—x: xex}={0}.

Pros: contra iterations, Bro s theorem

Applications: wton, optimiz.

Cons: overestimation (2/2)

Wrapping effect

. ANk
F9 N
image of f(x) 2 successive rotations of 7/4
with f : R? — R? of the little central square

Pros: contractant iterations, theorem

Applications:

Cons: complexity and efficiency
Complexity: most problems are NP-hard (caganov, Rohn, Kreinovich. ..
> evaluate a function on a box...even up to ¢
» solve a linear system. . .even up to 1/4n*
» determine if the solution of a linear system is bounded

Efficiency
Implementation using floating-point arithmetic:
use directed roundings, towards +oo0.

Overhead in execution time:
in theory, at most 4, or 8, cf.

y),RD(X x y
¥),RU(X x ¥))

[x, X] x [y,¥] =[min(RD(x x y),RD(x x ¥),RD(X x
max(RU(x x y), RU(x x ¥),RU(X x

in practice, around 20: changing the rounding modes implies

flushing the pipelines (on most architectures and implementations).

Cons: overestimation, complexity

Applications: Newton, optimization

Agenda

Cons and pros

Pros: contractant iterations, Brouwer's theorem

Cons: overestimation, complexity

Applications: Newton, optimization

Pros: set computing

safe? On x, are the extrema of the function f
controllable? dangerous? | > f1, < £,?

always controllable. No if f(x) = [f, f] C [f, f1].

Cons: overestimation, complexity

Applications: Newton, optimization

Pros: Brouwer-Schauder theorem
A function f which is continuous on the unit ball B and which
satisfies f(B) C B has a fixed point on B.
Furthermore, if f(B) C intB (and some other conditions) then f
has a unique fixed point on B.

The theorem remains valid if B is replaced by a compact K and in
particular an interval.

Cons: ov
Pros: conti

Agenda

Cons and pros

Applications: Newton, optimization

timation, compl
nt iterations, B

r's theorem

Cons: overestimation, comple:
Pros: contractant iterations, er's theorem

Algorithm: solving a nonlinear system: Newton

Why a specific iteration for interval computations?

Usual formula:
X = X — Fls)
k41 k F10x0)

Direct interval transposition:

_ f(x«)
Xk“r]. - Xk - f/(Xk)

Cons: o imation, comple:
Pros: contractant iterations, Broi

Algorithm: solving a nonlinear system: Newton

Why a specific iteration for interval computations?

Usual formula:
X = X — Fls)
k41 k F10x0)

Direct interval transposition:

_ f (%)
Xk“r]. - Xk - f/(Xk)
Width of the resulting interval:

w(xkr1) = w(xk) + w (;?;3) > w(xg)

divergence!

Cons: overestimation, comple:
Pros: contractant iterations, 's theorem

Algorithm: interval Newton (Hansen-Greenberg 83, Baker

Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)

tangent with the deepest slope

tangent with the
smallest slope

e

Cons: overestimation, comple:
Pros: contractant iterations, 's theorem

Interval Newton: Brouwer theorem
If the new iterate (before intersection) is a subset of the previous
iterate, then f has a zero on it.
Furthermore, if it is included in its interior, then this zero is unique.

tangent with the deepest slope

tangent with the
smallest slope

Cons: overestimation, comple:
Pros: contractant iterations, uwer's theorem

Algorithm: interval Newton

tangent with the smallest slope tangent with the deepest slope

=
=

=1
J

X(k+1) TX(D)
X(k)

(Xk41,1, Xk41,2) 1= <Xl< - f({xkk})) ﬂXk

Cons: overestimation, comple:

Pros: contractant iterations, 0 theorem

Algorithm: interval Newton

Input: f, f/, xg // xo initial search interval
Initialization: £ = {x¢}, « =0.75 //any value in]0.5, 1] is suitable
Loop: while £ # ()
Suppress (x, L)
x := mid(x)
(x1,%2) := (x — %) () x // x1 and x5 can be empty
if w(x1) > aw(x) or w(xz) > aw(x) then (x1,xz) := bisect(x)
if x; # 0 and f(x1) > 0 then
if w(xy)/|mid(x1)| < ex or w(f(x1)) < ey then Insert x; in Res
else Insert x1 in £
same handling of x;

Output: Res, a list of intervals that may contain the roots.

Cons: overestimation, comple:

Pros: contractant iterations, Broi

Algorithm: optimize a continuous function

Problem: f : R" — R, determine x* and f* that verify

F* = f(x*) = min f(x)

X

Assumptions:

» search within a box xg

» x* € in the interior of (xp), not
at the boundary

» f continuous enough: C?

Cons: overestimation, comple:

Pros: contractant iterations, Broi

Algorithm: optimize a continuous function
(Ratschek and Rokne 1988, Hansen 1992, Kearfott 1996...)

Goal: find the minimum of f, continuous function on a box xg.
Xg current box
f current upper bound of f*
while there is a box in the waiting list
if £(x) > f then
reject x
otherwise
update f: if f(mid(x)) < f then f = f(mid(x))
bisect x into x; and x»
examine x1 and x»

Cons: o imation, comple:
Pros: contractant iterations, Broi

Algorithm: optimize a continuous function
the rejection procedure

!)
D
. L

l [l !

o .

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| ! ! ! | !

| o

A o

I : H : I H

X1 X2 X3
ftrop haute : F(X1) > f fnon convexe sur X3

0 n’est pas dans G(X2)

timation, (omple

ctant iterations, 0 theorem

Algorithm: optimize a continuous function

Hansen algorithm Hansen 1992

L = list of not yet examined boxes := {xo}
while £ # () loop
remove x from L
reject x?
yes if f(x) > f
yes if Gradf(x) Z 0
yes if Hf (x) has its diagonal non > 0
reduce x
Newton applied to the gradient
solve y C x such that f(y) < f
bisect y: insert the resulting y; and y, in £

Cons: ov timation, compl
Pros: cont nt iterations, B r's theorem

Example of the splitting of the box [—2,2]?

-
=

Agenda

IEEE 1788

Precious features

» Fundamental theorem of interval arithmetic (“Thou shalt
not lie”): the returned result contains the sought result;

» Brouwer theorem: proof of existence (and uniqueness) of a
solution;

» ad hoc division: gap between two semi-infinite intervals is
preserved.

Precious features

» Fundamental theorem of interval arithmetic (“Thou shalt
not lie”): the returned result contains the sought result;

» Brouwer theorem: proof of existence (and uniqueness) of a
solution;

» ad hoc division: gap between two semi-infinite intervals is
preserved.

Goal of a standardization: keep the nice properties, have
common definitions.

IEEE P1788 working group
Creation of the IEEE P1788 project: Initiated by 15 attenders
at Dagstuhl, Jan 2008. Project authorised as IEEE-WG-P1788,
Jun 2008, until December 2014.

How P1788’s work is done

» The bulk of work is carried out by email - electronic voting.

» Motions are proposed, seconded; three weeks discussion
period; three weeks voting period.

> |EEE has given us a four year deadline + two more:
December 2014.

» One “in person” meeting per year is planned — next one
during IFSA/NAFIPS 2013, June, Edmonton, Canada.

» |IEEE auspices: 1 report + 1 teleconference quarterly

http://grouper.ieee.org/groups/1788/

IEEE P1788 working group
Creation of the IEEE P1788 project: Initiated by 15 attenders
at Dagstuhl, Jan 2008. Project authorised as IEEE-WG-P1788,
Jun 2008, until December 2014.

How P1788’s work is done

» The bulk of work is carried out by email - electronic voting.

» Motions are proposed, seconded; three weeks discussion
period; three weeks voting period.

> |EEE has given us a four year deadline + two more:
December 2014.

» One “in person” meeting per year is planned — next one
during IFSA/NAFIPS 2013, June, Edmonton, Canada.

» |IEEE auspices: 1 report + 1 teleconference quarterly

http://grouper.ieee.org/groups/1788/

IEEE-1788 standard: the big picture

LEVEL1
math

LEVEL2
impl.

LEVEL3
computer

LEVEL4
bits

IEEE-1788 standard: the big picture

LEVEL1
math

objects
representation

(no mid-rad...)
constructors

LEVEL2
impl.

LEVEL3
computer

LEVEL4
bits

IEEE-1788 standard: the big picture

. operations
LEVEL1 objects . arithmetic+exceptions
math representation set
(no mid-rad...) interval
constructors
LEVEL2
impl.
LEVEL3
computer
LEVEL4
bits

IEEE-1788

standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set

(no mid-rad...) interval

constructors

LEVEL2
impl.
LEVEL3
computer
LEVEL4
bits

IEEE-1788 standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set

(no mid-rad...) interval

constructors

LEVEL2 \\ representation
impl.
LEVEL3
computer
LEVEL4
bits

IEEE-1788

standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set

(no mid-rad...) interval

constructors
\\ tati \

LEVEL2 fepresentation link with TEEE-754
impl.
LEVEL3
computer
LEVEL4
bits

IEEE-1788 standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set

(no mid-rad...) interval

constructors
\\ tati \
LEVEL2 fepretentation link with TEEE-754
impl.
interchange

Y
LEVEL3
computer
LEVEL4
bits

IEEE-1788 standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set
(no mid-rad...) interval
constructors
\\ tati \
LEVEL2 fepretentation link with TEEE-754
impl. X handling in a
interchange programming language
(constructors...)
Y
LEVEL3
computer
LEVEL4
bits

IEEE-1788 standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set
(no mid-rad...) interval
constructors.
\\ tati
LEVEL2 'epmie“ A ‘E‘\\ W’ link with IEEE~754
impl. handling i exceptions
. gina
interchange programming language —
(constructors...)
Y
LEVEL3
computer
LEVEL4
bits

IEEE-1788 standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set
(no mid-rad...) interval
constructors.
\\ tati
LEVEL2 'epmie“ A ‘E‘\\ W’ link with IEEE~754
impl. handling i exceptions
. gina
interchange programming language — /0
(constructors...)
Y
LEVEL3
computer
LEVEL4
bits

IEEE-1788 standard: the big picture

. operations predicates
LEVEL1 objects . arithmetic+exceptions comparisons
math representation set
(no mid-rad...) interval
constructors,
\\ tati
LEVEL2 repreim e \L‘ link with [EEE754
impl. handling in a exceptions
interchange programming language /0
(constructors...)
¥
LEVEL3
computer
LEVEL4
bits

Agenda

Precision and numerical reproducibility

Repeatability and reproducibility

Repeatability:
getting the same result (the same bits) from run to run, on the
same machine.

Reproducibility:
getting the same result (the same bits) from run to run, whatever
the machine.

Numerical reproducibility?
Definition?

» Numerical reproducibility = best possible result = correct
rounding of the exact result?

» Numerical reproducibility = getting the same string of bits
whatever the run?

Cf. Nguyen and Demmel (Arith 2013): implementations of the
second choice for the summation, with a tradeoff between the
accuracy of the result and the execution time.

New light on numerical reproducibility:
» reproducibility and correct rounding are separate notions

> a hierarchy of reproducibility levels exists: accuracy vs
execution time.

Reproducibility: influence of the computing precision

(1/2)

The computing precision may depend on
» the processor (Binary32, Binary64, 80bits-registers),
» the language (Fortran vs C, cf. Florent's talk).

Influence on an interval computation: theoretically, the
overestimation of the result is proportional to the ulp:
w(X) — w(x) = O(27P|x|) where p is the computing precision.

Reproducibility: influence of the computing precision

(2/2)

Influence on an interval computation: in practice,

» use the midpoint-radius representation for thin intervals: the
radius accounts for roundoff errors,

> use iterative refinement to reduce the width,

> use higher precision for critical intermediate computations
(residual) to hide the effect of the computing precision,

and get w(X) — w(x) ~ 27P|x|, i.e. the best possible result.

Examples: linear systems solving, Newton iteration.

Influence of the expression

Using floating-point arithmetic: the problem comes from the
non-associativity of the operations

(a1 + a2) + (a3 + as) # ((a1 + a2) + a3) + as.

Using interval arithmetic: the expression influences the result

because operations are neither distributive nor reciprocal (4 of —,
x of /).

Using interval arithmetic implemented with floating-point
arithmetic: because operations are neither distributive nor
reciprocal (+ of —, x of /) nor associative: problems cumulate.

Influence of the expression: example

[2100’ 2100] FL1] - [2100, 2100]?
With these parentheses:
([2190, 2190] 4.1, 1])— [210, 2190] — [2190, uic(21%0)] 2190, 210] — [0, ulp(210)].
With those parentheses:
([2190,2190) — 2190 2199)) 4 [1,1] = [0,0] + [1,1] = [L,1].

Both include the results, one is more accurate than the other. ..

Moral lesson: interval results are always guaranteed to include the
exact result, whatever the chosen expression. However their
accuracy strongly depends on the chosen expression, on the order
of operations.

More on the influence of the order of the operations
Beware " hidden” assumptions on the order of the operations.

Example: interval matrix product.

In order to save 1 or 2 calls to gemm (BLAS matrix product),
Rump’s algorithm (2012) assumes that Ap, - B, and |A,| - |Bpy|
are computed in the same order.

BLAS do not guarantee anything on the order of operations nor on
the reproducibility of this order from one product to the next.

Moral lesson: interval results could depend on the order of
operations,

interval results could be wrong if they relied too much on the order
of operations.

Rounding modes

Are rounding modes preserved?

> by the compiler
> by the BLAS:

» undocumented for classical BLAS,

» false for fast methods such as Strassen’s matrix multiplication,

» impossible for extended BLAS that are based on error free
transforms (cf. TwoSum in Jean-Michel's talk).

HPC issues

Specific issues:
» order of operations: no specified order in parallel evaluations
» computing precision: problem on distributed, heterogeneous
environments (not — yet — our problem)
» rounding modes:

» is the rounding mode local to each thread or global?

> is the rounding mode respected by the thread or set to a
default value?

» are rounding modes saved and restored at context switches
during a multithreaded computation?

HPC issues

CNR: numerical reproducibility by MKL version 11: if the
processors, the OS, the number of threads and the memory
alignment are preserved, then MKL guarantees numerical
reproducibility.

Non-efficient, non-user-friendly, non-portable solution.

Interval guarantee
New light on numerical reproducibility:
» reproducibility and correct rounding are separate notions
> a hierarchy of reproducibility levels exists: accuracy vs
execution time.

Interval equivalent of the numerical reproducibility?

» the inclusion property (the guarantee that the computed
result contains the exact result) must be preserved,

» preserved inclusion property and correct rounding of the exact
result are separate notions,

> to guarantee the inclusion property, brute-force bounds on
roundoffs errors can be used,

> a hierarchy of guarantee levels exists: accuracy vs execution
time.

Interval guarantee: what to take home

Main strength of interval computations

> results may differ. ..

Interval guarantee: what to take home

Main strength of interval computations
> results may differ. ..

> ...but they are consistent:

Interval guarantee: what to take home

Main strength of interval computations
> results may differ. ..
> ...but they are consistent:

> thank to the inclusion property, the exact result is in the
intersection of all computed results.

Bibliography

Agenda

Conclusions

Bibliography

Existing software and libraries

> IntLab in MatLab

» intPak in Maple: not guaranteed

> IntLib in Fortran: global optimization
» COSY: Taylor models

» Boost

» MPFI

» C-XSC

» many specialized libraries, ongoing work for porting to HPC
(GPU, MPI)

Agenda

Conclusions
Bibliography

References on interval arithmetic

» R. Moore: Interval Analysis, Prentice Hall, Englewood Cliffs,

1966.

A. Neumaier: Interval methods for systems of equations, CUP,
1990.

R. Moore, R.B. Kearfott, M.J. Cloud: Introduction to interval
analysis, SIAM, 2009.

W. Tucker: Validated Numerics: A Short Introduction to
Rigorous Computations, Princeton University Press, 2011.
S.M. Rump: Computer-assisted proofs and Self-Validating
Methods, pp. 195-240. Handbook on Accuracy and Reliability
in Scientific Computation (B. Einarsson ed.), SIAM, 2005.
S.M. Rump: Verification methods: Rigorous results using
floating-point arithmetic, Acta Numerica, vol. 19, pp.
287-449, 2010.

References on interval arithmetic

» J. Rohn: A Handbook of Results on Interval Linear Problems,
http://www.cs.cas.cz/rohn/handbook 2006.

E. Hansen and W. Walster: Global optimization using interval
analysis, MIT Press, 2004.

R.B. Kearfott: Rigorous global search: continuous problems,
Kluwer, 1996.

V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational
Complexity and Feasibility of Data Processing and Interval
Computations, Dordrecht, 1997.

L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic.
unicamp.br/~stolfi/EXPORT/projects/affine-arith/.

Taylor models arith.: M. Berz and K. Makino, N. Nedialkov,
M. Neher.

http://www.cs.cas.cz/rohn/handbook
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/

	Introduction
	Operations, expressions
	Operations
	Expressions and functions extensions
	Variants: for higher accuracy
	Vectors, matrices

	Cons and pros
	Cons: overestimation, complexity
	Pros: contractant iterations, Brouwer's theorem
	Applications: Newton, optimization

	IEEE 1788
	Precision and numerical reproducibility
	Conclusions
	Bibliography

