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Biomechanics and Bioengineering lab, UMR 7338

2Conservatoire National des Arts et Métiers, M2N lab

Keywords – Abdominal aortic aneurysm; rupture; FSI; pulsatile blood flow; model-order reduction; AI

Context – An abdominal aortic aneurysm (AAA) consists of a dilatation of the lower part of the aorta, before
the bifurcation to the iliac arteries that irrigate the legs. The issue for clinicians remains to determine the risk
of rupture and the necessity to intervene surgically (the clinical act being typically through mini-invasive routes
nowadays) during the follow-up of the patients. Hemodynamic numerical simulations are promising, as they
would provide clinicians with biomechanical patient data, which would be help them make decisions. Indeed,
current decisions are typically made based solely on pure geometrical parameters of the AAA. But solving the
equations governing the blood flow within the aneurismal abdominal aorta is challenging. To enumerate a few of
the challenges, one has to solve a stiff fluid-structure interaction (FSI) problem, with non-linear material and fluid
properties, and complex boundary conditions (e.g. strongly pulsatile pressure-driven flow conditions; anchorage
at the levels of the diaphragm, pelvis and vertebral column; need to model at least the compliance and resistance
of the downstream vessels), see [1].
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Figure 1: a) Sketch of an abdominal aortic aneurysm [2]; b) Blood velocity field in a fusiform aneurysm, measured
by PIV [3].

The integration of Machine Learning (ML) and Physics has fostered a mutually beneficial relationship, leading
to the development of both Physics-informed and Physics-inspired models, in particular for cardiovascular Biome-
chanics [4]. An important application area for these advanced models is Reduced Order Modeling (ROM). ROM
aims at providing computationally efficient alternatives to large, data-intensive models, particularly important for
real-time simulation and control in critical systems [7], but most approaches struggle to predict and generalize
well to nonlinear and complex high-dimensional dynamical systems such as those of interest in this project.

Koopman theory provides a robust mathematical framework for dealing with complex dynamical systems by
assuming the existence of an infinite dimensional space in which the dynamics are linear. This concept has been
applied in various ML implementations [8], but it involves expanding the number of dimensions (observables)
towards infinity, which is often impractical and different from the ROM framework that our work seeks to inte-
grate. Recent research has attempted to combine ROMs with Koopman theory by providing closure models for
unrepresented observables [9, 10]. However, these closure models often rely on delay embedding and parabolistic
predictions. With recent advances in generative AI architectures, both aspects of such closures could potentially
be represented by relying on ML strategies.
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Scientific objectives, originality – The idea behind our project is to modernize and leverage numerical AAA
simulations with Artificial Intelligence (AI) to make their use easier in the medical community and the procurement
of the biomechanical patient-specific data possible within less than one minute, which is a real challenge. On the
fundamental science side, and as mentioned above, our objective is to investigate state-of-the-art data-driven
identification algorithms for high-dimensional spatio-temporal problems from previous high-fidelity simulations,
possibly readjusted with patient data/measurements. We hope they will enable live visualizations of quantities and
fields of interest (stress fields, risk assessment according to the evolution) for decision-making (surgical decision,
surgical procedure).

Justification of the scientific approach – Current computational Physics-based solvers can provide accurate
results but are very time-consuming. For medical use, a breakthrough is needed to lower the computational time
by at least 3 or 4 orders of magnitude. We believe that a smart synergy between Full-Order models (FOM) and
AI-based strategies can take up this challenge.

Alignment with the SCAI Institute and PostGenAI@Paris – This exploratory project adopts an inter-
disciplinary approach including biomechanics, scientific computing, advanced AI/ML methods, data science and
medical applications.

Role of each supervisor

– F. De Vuyst (UTC, principal supervisor) is Prof. PU1 CNU 26, affiliated with the Biomechanics and Bioengi-
neering lab. His areas of expertise include numerical analysis, computational methods for PDEs, and general
approximation methods. Part of his research focuses on MOR techniques and potential synergies between ROM
methods and ML for fluid mechanics and fluid-structure interaction problems. He is responsible for the MSc
Degree program ”Complex System Eng.” at UTC where he teaches SML. For the project, he will contribute his
knowledge and skills in ROM (e.g. geometry reparametrization, see [11]) and SML (AE, possibly GNN for mesh
and field interpolation).

– I. Mortazavi (CNAM, co-supervisor) is Prof. PUEX1 CNU 26, affiliated with the M2N lab (former Direc-
tor), expert in computational methods for Fluid Mechanics, especially for Navier-Stokes equations and turbulence
modeling. He is also strongly involved in dimensionality reduction techniques and ROMs (POD, Spectral POD,
(E)DMD, Koopman theory, quadratic manifold learning, ...).

– A.-V. Salsac (UTC, co-supervisor) is DR2 CNRS in Section 10, specialized in biofluids applied to the study of
hemodynamics from the large blood vessels to the microcirculation, and of endovascular treatments. She received
various prestigious prizes and projects (e.g. Medal of the National Order of Merit in 2016, ERC Consolidator
grand in 2018, co-PI of a CAP of PostgenAI@Paris in 2024). Her research combines highly fundamental studies
with applied aspects (strong collaborations with clinicians and industries such as ANSYS, Guerbet).

We believe that this doctoral project is a great opportunity for the two ASU labs to collaborate together, sharing
their experience and different expertises on this challenging problem.

[1] J.C. Lasheras, The biomechanics of arterial aneurysms. Annual Review of Fluid Mechanics, 39, 293-319 (2007).
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